ESSENTIAL KNOWLEDGE BOOK

Name: Form:
 Year 9
 Booklet One (Foundation Maths)

Page 1

Username/Password Information

Platform	Username	Password Reminder
School email		
School PC logon		
Class Charts		
GCSE Pod		
Carousel		
Sparx		
Educake		
Isaac Physics		

Todmorden High School Student ARCH agreement

You and your parents have chosen for you to attend our school. Todmorden High school is a three-time Ofsted judged 'Good' high school. We have four values that create the acronym ARCH. You should use these values to guide you in your decisions in school and in your wider life. f you follow the expectations in the agreement below you will leave Todmorden High School with the skills, qualifications and confidence who contribute positively to society.
To achieve our value of Ambition:
I will arrive on time to school and attend all lessons on time.
I will complete all home learning set on time and to the best of my ability.
I will have high expectations of myself, now and for the future, so I can unlock my unique potential.
experiences.
will join in with some extra-curricular activities throughout the year to expand my

I will celebrate my achievements at home

To achieve our value of Respect

I will wear the correct school uniform, including travelling to and from school. I will not wear jewellery to school, other than a pair of plain studs and a watch (optional). I will bring the correct equipment each day. I will attend detentions if they are set.
I will speak to all staff members with respect following instructions given by staff without argument or delay.
will ensure I behave in a considerate manner not only whilst at school but also on the journey to and from school and within the wider community.
To achieve our value of Care

To achieve our value of Honesty

I will be honest about my actions.
will ensure I do not share actions and thoughts out of withe and
will ensure I do not share actions and thoughts out of line
I will approach lessons silently ready for silent retrieval.
I will move around the school in a calm manner, following the one-way system and walking on the left
I will ensure I will ensure my mobile phone and smart watch are not seen or heard on are placed in the bottom of my school bag when before I arrive in school and school site at the end of the day.
I will accept personal responsibility for my mistakes
I will ensure all members of our school community feel valued, I will not accept discrimination and bullying in school.
I will make school aware if members of

[^0]

A guide to your Knowledge Organiser

What is a knowledge organiser?

A knowledge organiser is a place where your teachers have put all the core knowledge that you need to know for a particular topic. They are designed to support you to become self-regulated learners.

It is your first point of reference in lessons to check your understanding. You can use your knowledge organiser to:

- Check your understanding of key vocabulary in a lesson.
- Check your knowledge of a particular topic.
- Self-check quizzing and revision.

A knowledge organiser is not everything you are going to learn about a topic; this information will come from your lessons.

How to use your knowledge organiser

In lesson

Unless told otherwise, have your knowledge organiser on the desk, open at the subject you are currently in. This will make it simpler for you to check your understanding of key vocabulary.

If you are struggling with a knowledge question, refer to your knowledge organiser before asking your teacher. This will also develop your research skills.

When planning your written answers in lessons, refer to your knowledge organiser for that subject to ensure you have correct and detailed knowledge.

As revision

Look-Cover-Write-Check

1. Choose one section of your knowledge organiser.
2. Study it carefully. I find that reading it out works to embed it into memory.
3. Cover the section with a paper, or turn the KO over
4. Write the sentence/information out from memory.
5. Check it against your KO.

Timeline/diagrams

se the information from your knowledge organiser and transform it into something else. This can be a timeline, storyboard or diagram.

Self-quizzing

Choose a section of the knowledge organiser you want to learn. Create a set of questions to test yourself with. These can be on flashcards, or even Quizlet. Use the sections of your KO to chunk the knowledge together and make it manageable.

Key themes (big ideas)

Fatherhood \& masculinity - Blackman uses the novel to explore ideas about fatherhood and masculinity, such as the expectations that fathers are disciplinarians in families, and the need for men to hide their feelings for fear of appearing weak.

Growing up - in some ways the novel is a 'coming of age' novel and reflects many of the complex emotional difficulties facing young people in modern society.

Family - Through the Bridgeman family, Blackman explores many aspects of the modern family; emotional issues such as loss of a parent, conflict over identity and the financial difficulties faced by single parents.

Tolerance - a lack of tolerance leads to expressions of anger and violence throughout the novel. For instance, Dante comes to realise late in the novel that he has tolerated his friend's casual homophobia by calling it 'just a word'.

Vocabulary	Definition
beseech	beg
contempt	dislike or hatred
diabolical	evil
disorientated	confused, bewildered
dual narrative	a story with two different narrators
irate	angry
obligation	duty, responsibility
preposterous	ridiculous
protagonist	leading character
relinquish	give up
resentful	bitter, offended
scathing	extremely critical
volatile	unpredictable

Contexts and concepts	
Malorie Blackman was Children's Laureate from 2013 until 2015. She was born in London but her parents were originally from Barbados. Until she wrote her best-selling Noughts and Crosses series ethnicity had never been central to her protagonists' lives. "I wanted to show black children just getting on with their lives, having adventures, and solving their dilemmas, like the characters in all the books I read as a child." In Boys Don't Cry, the family's ethnicity is only casually revealed halfway through.	Race - In the 1970s and 1980s, black people in Britain were the victims of racist violence perpetrated by far-right groups such as the National Front. Racism in Britain in general, including against black people, is considered to have declined over time and any discrimination on the basis of race has been enshrined in British law as an offence since 1976. However, incidents such as the Grenfell fire have brought to the forefront issues of poverty and inequality amongst BAME communities.
Sexuality - there has been a notable increase in the acceptance of homosexuality in the UK in recent years and the LGBTQ movement now holds regular Gay Pride events across the country. Legislation during the latter part of the $20^{\text {th }}$ and the early part of the $21^{\text {st }}$ century made any kind of discrimination on the basis of sexuality illegal and in 2014 legislation was finally passed to allow same sex marriage.	Education - there has been a continued rise in the number of young people going to university; in the 1960s it was 4\%, now it is closer to 50%. Young people now have to stay in education or further training until they are over 18, and A Levels are seen as the gateway to further education, rather than an end in themselves.
Single parents - Unlike the early part of the $20^{\text {th }}$ century, single parent families are far more commonly accepted in the $21^{\text {st }}$ century. They make up nearly a quarter of families with dependent childaren in the UK.	The Welfare State is a system whereby the state provides support to its citizens, and government expenditure on the welfare state is intended to improve societal areas such as health, education, employment and social security.

English Knowledge Organiser

Key characters		Plot	
Macbeth	Eponymous protagonist, ambitious, ruthless.	Act 1	Macbeth and Banquo meet the witches, Cawdor executed, Lady Macbeth reads letter and taunts Macbeth, Duncan arrives.
Lady Macbeth	Defies expectations, strong and ambitious.	Act 2	Macbeth kills Duncan, Macbeth is crowned, Malcolm flees.
Witches	Supernatural beings, prophecy, could represent conscience.	Act 3	Banquo suspects Macbeth, Banquo murdered, Fleance escapes, Macbeth is haunted by
Banquo	Macbeth's friend, sons prophesized to rule, killed and returns as a ghost.		Banquo at a banquet.
		Act 4	Witches show Macbeth future Kings - Sons of Banquo, Macduff's family murdered.
Duncan	Great King, loves Macbeth at the start, gets killed in Act 2.		
MacDuff	Wife and children killed, vengeful, kills Macbeth, born by Caesarean.	Act 5	Lady Macbeth goes mad and sleepwalks, Lady Macbeth dies, Macbeth is killed by Macduff and Malcolm is crowned King.

Motifs - write down key quotes that match the motifs

Nature

Light and Dark

Children

Blood

Sleep

Dreams

Themes - tick them off when you have seen them in the play

Fate and free will	Is the action pre-decided?
Ambition	The Macbeths' ambition drives the play.
Appearance and reality	People and events are not always what they seem.
Supernatural	Witches, ghosts, prophecies. Violence
Many battles throughout the play.	

Unnatural

Hallucination

Cyclical
Guilt / Anxiety
Betrayal of prophecy

Lady Macbeth "Come you spirits...Unsex me here"

Macbeth "Is this a dagger I see before me?"

Macbeth "Blood will have blood".

Lady Macbeth: "All the perfumes of Arabia will not sweeten this little hand".

Macbeth "I bear a charmed life".

English Knowledge Organiser

Useful Formal Debate Phrases

Opening the debate:

Ladies and Gentlemen, welcome to this debate.
Welcome from this side of the house...
The motion for debate today is: ... defining the motion:
Now we as today's proposition/opposition strongly believe that this is true/not true.

Presenting the team-line

I, as the first speaker, will be talking about ...
Our second speaker, ..., will elaborate on the fact that ...

Introducing arguments

My first/... argument is:
The first/... reason why we're prop/opposing this motion is:
There are many examples for this/for ..., for instance.
In fact, you can find many examples for this in real life. Just think of..
And there are similar cases, such as..., ...
So in this simple example we can clearly see the effect of ...
Now because of this ..., we have to support this motion.

Summarising and ending your speech

So ladies and gentlemen, what have I told you today? And for all of these reasons, the motion must stand/fall.
And for all these reasons, I beg you to prop/oppose

Speak Up

When you take a stand and say what you choose, Without hesitation, or being confused, Not holding a fear of what others may say, But to say what you mean in everyway.

5 It liberates your soul, by setting you free,
No longer a prisoner of insecurity,
But a teacher to others who sometimes hold back, By seeing in you the strength that they lack, Releases their fears and doubts that they hold,
10 And helps them now see its ok to speak bold, Just do it with dignity, kindness and love,
Give all of your fears to our friends up above.

Don't compromise yourself to collude with the rest,
Speak truth in your words and remain at your best,
If others don't like the control that they lack, Because of your strength to speak truth and talk back.

Let that be their issue, don't lose who you are, Keep making that stand and you're sure to go far. We all have the right to express our beliefs,
20 Our ideas, opinions, happiness and grief.

But we must allow others to do just the same, Respect them and their wishes without drama and pain.
So keep trying hard to find that strength deep within,
And let old habits go, so new ones can begin.

| Place Value - what the digits represent in a number | | What we use to do a calculation its called the priority of |
| :--- | :--- | :--- | :--- |
| operations. | | |

Integer - a whole number can be positive or negative

Negative number: a real number that is less than zero.

Negatives: multiplying and dividing:

1.When the signs are different the answer is negative. 2.When the signs are the same the answer is positive.

```
\(-4,-3,-2,-1,0,1,2,3,4 \ldots\)
```


BIDMAS - The order in which we do calculations.
 Brackets first then indices. Division and multiplication same time left to right.

Finally Addition and subtraction same time left to right.

Square Numbers - when an integer has been multiplied by itself.
Expand brackets: multiply each term inside the bracket by the term outside.

Factorise: divide each term by the

 highest common factor, writing the HCF outside the bracket.Simplify algebraic expressions: collect like terms (terms with the same variable)

Substitution: Swapping an algebraic letter

 for its value.
Foundation - Unit 2 - Algebra

Variable	The letters used in algebraic expressions to stand for numbers. Called a variable because they vary.
Multiplying powers	Add the indices if base numbers the same
Dividing powers	Subtract the indices if base numbers the same
Anything to the power zero	Is one
Substitution	Swapping an algebraic letter for its value.
Expanding a Single Bracket	Multiply each term inside the bracket by the term outside.
Factors	Numbers or letters that divide into a term exactly.
Common Factors	A factor of two or more terms.
Identity $\overline{\text { 三 }}$	Two expressions are equal for all values of the variable.
Not equal \neq	Used to show that two expressions are not equal.
Multiply Algebraic Terms	Multiply the numbers first and then the letters.
Divide Algebraic Terms	Divide the numbers first and then the letters.
Simplifying Terms	- Write numbers before letters (for coefficients). - Write letters in alphabetical order. - Write higher power terms first.

Foundation - Unit 3 - Graphs, Tables and Charts

A tally chart should have titles on columns and clearly drawn tallies.

A bar chart should have a title, titles on both axes, equal scale on the y axis and gaps between the bars.

Discrete Data	Only take particular values. You can write groups such as 1-5, 6-10.
Continuous Data	Measured, can have any value. Write inequalities for the groups with no gaps between them.
Data Collection Sheet	A table to record data as you collect it.
Distance Chart	Show the distance between several places.
Line Graph	Useful for identifying trends.
Trend	The general direction of change.
Histogram	Type of frequency diagram used for grouped continuous data. There are no gaps between the bars.
Stem and Leaf Diagram	Numerical data split into "stems" and "leaves". The numbers are placed in order.
Outlier	A value that does not fit the pattern of the data. You can ignore an outlier if it due to a measuring or recording error.
Back-to-back stem and leaf diagram	Compares two sets of data. Needs to have two keys.
Frequency Polygon	Plot the midpoint against the frequency using straight lines.
Correlation	Shows that there may be a link/relationship between two events. Correlation does not show causation (does not show that one event caused the other).

1000 grams $=1$ kilogram

To add or subtract fractions, they must have the same denominators. Use the LCM to find equivalent fractions with the same denominator.

$$
1 \text { million = 1,000,000 }
$$

Foundation - Unit 4 - Fractions and Percentages
To simplify a fraction, divide the numerator and denominator by the greatest common factor.

Percentage of a quantity: Find 1% by dividing by 100 , then multiply by required percentage. OR Use combinations of 10% (divide by 10) and 1% (divide by 100) to find required amount.

Comparing Fractions	To compare fractions, write them with the same denominator then compare numerators.
Multiply Fractions	Multiply the numerators and multiply the denominators.
Add or Subtract Fractions	Write them with a common denominator then add or subtract the numerators.
Fraction of an Amount	Divide by the denominator, multiply by the numerator.
Unit Fraction	A unit fraction has a numerator of 1.
Reciprocal	The reciprocal of a fraction is the "upside down" fraction.
Decimal to a fraction	The denominator is the smallest place value.
Fraction to a percentage	Convert the fraction to one with the denominator of 100, then the numerator is the percentage.
Decrease by a percentage	Work out the decrease and subtract from the original number.
Deposit	First payment towards the cost of something.
Balance	The remaining amount which is owing after a deposit.
Work out the increase and add to the original number.	

Foundation - Unit 5 - Equations, Inequalities and Sequences

Inverse operations are opposite operations.

They are the operation that reverses the effect of another operation.

Substitution means putting numbers in place of letters to calculate the value of an expression.

To work out the term to term rule, give the starting number of the sequence and then describe the pattern of the numbers.

Expand brackets: multiply each term inside the bracket by the term outside.

Arithmetic sequences are where terms increase (or decrease) by a fixed number (common difference).

Simplify algebraic expressions: collect like terms (terms with the same variable).

To solve a single step equation, use the inverse operation and a balancing method.

Subject	'The subject of a formula is the letter on its own on one side of the equals sign.
Equation	Contains an unknown number (a letter) and an = sign.
Solve an equation	Work out the value of the unknown number by using inverse operations.
Solve an inequality	Solve in the same way as a linear equation: use inverse operations to work out the unknown value.
Substitution	Replace values in a formula to solve the resulting equation.
Formula	Shows the relationship between two or more variables (letters).
Sequence	Pattern of numbers or shapes that follows a rule.
Term	The numbers in a sequence.
Term-to-term rule	Describes how to get from one term to the next.
Arithmetic Sequence	Goes up or down in equal steps of a common difference. Term-to-term rule is add or subtract.
Geometric Sequence	The term-to-term rule is multiply or divide by a number.

Foundation - Unit 6 - Angles

An object's degree of rotational symmetry is
 the number of distinct orientations in which it

 looks exactly the same for each rotation.
An Interior Angle is an
 angle inside a shape.

The Exterior Angle is the

 angle between any side of a shape, and a line extended from the next side.| Congruent Shapes | Exact same shape and size, but reflected, rotated or translated. |
| :---: | :---: |
| Similar Shapes | Same shape but enlarged (bigger or smaller). Sides are in the same ratios. |
| Polygon | 2-dimensional shape bound by straight sides. |
| Regular Polygon | All equal side lengths and all equal angles. |
| Irregular Polygon | Unequal side lengths and unequal angles. |
| Tessellation | Shapes fitting together. For shapes to tesselate, all angles at the point where the shapes meet must add to 360°. |
| Angle sum | Sum of the interior angles of a polygon. |
| Interior Angle | An Interior Angle is an angle inside a shape. |
| Exterior Angle | The Exterior Angle is the angle between any side of a shape, and a line extended from the next side. |
| Straight Line | Angles on a straight line add up to 180°. |

Foundation - Unit 7 - Averages and Range

A tally chart should have titles on columns and clearly drawn tallies.

A year - contains 12 months
A quarter - refers to a 3 month period.
Increase - the values are going up.
Decrease - the values are going down.
Constant rate - going up or down by the
same value each time.

Frequency - The amount of times something occurs

Stem and Leaf Diagram - Splits values by place value. Shows spread. Needs a key.

A bar chart should have a title, titles on both axes, equal scale on the y axis and gaps between the bars.

Mean	Total of the values divided by the number of values.
Frequency	The total number of values.
Median	Middle value when the n data is written in order. When n data values are written in order, the median is $(n+1) / 2$ th value.
Outlier	An extreme value that doesn't fit the overall pattern.
Modal class	Class with the highest frequency.
Mode	Data value with the highest frequency.
Sample	A selection taken from a larger group that will, hopefully, let you find out things about the larger group.
Population	The whole group that is being studied.
Bias	A sample is biased if individuals or groups from the population are not represented in the sample.
Ratings	Number of people who watched a programme.
Appreciation Figure	The percentage of viewers who describe it as "good" or "excellent".
Range	Shows the spread of the data. The difference between the largest and smallest value.

If a shape has two dimensions, it means there are 2 ways it can be measured in space.

A 3D shape can be defined as a solid figure or an object or shape that has three dimensions - length, width and height. Unlike twodimensional shapes, 3D shapes have thickness or depth.

Perimeter is the distance around the outside of a shape. Area measures the space inside a shape.

To convert centimetres to millimetres

 multiply by 10 , centimetres $\times 10$ $=$ millimetres.1 Square centimetre is equal to 100 square millimetres.

A vertex is a corner. An edge is a line segment between faces. A face is a single flat surface.

Foundation - Unit 8 - Perimeter, Area and Volume 1

Dimensions	Rectangle: length and width. Cuboid: length, width and height.
Prism	A 3D solid that has the same cross-section all through its length.
Volume	Volume of a 3D solid is the amount of space inside it. Measure in cubic units, $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$.
Volume of a prism	Length x width x height lwh
Surface Area	Area of cross-section x length
Compound Shape	Surface Area of a 3D solid it the total area of all its faces. Sketch the net and work out all the face.
Capacity	Made up of simple shapes. To find the area, split it into simple shapes like rectangles and triangles, find the areas and add them together.
The amount of liquid a 3D object can hold.. It is measure	
in litres and ml.	

simple shapes like rectangles and triangles, find the areas and add them together.

A power of 10 is any of the

 integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer).To find the area of any trapezium, add together the parallel sides and multiply by the height. Then halve your answer.

Foundation - Unit 9-Graphs
Substitution is the name given to the process of swapping an algebraic letter for its value.

Coordinates are numbers which determine the position of a point or a
 shape in a particular space (a map or

a graph).

Points are marked by how far along they are on the x
axis (the horizontal axis) and how far
up they are on the y
axis (the vertical axis)

A linear equation is an equation that describes a straight line on a graph. You can remember this by the "line" part of

 the name linear equation.
The gradient tells us how steep a line is, therefore the bigger

 the gradient the steeper the line is.
A positive gradient is a straight line which slopes up to the

 right.A negative gradient is a straight line which slopes down to the right.

Distance $=$ speed \times time

Correlation is used to describe the linear relationship between two continuous variables (e.g.,

 height and weight).

Gradient	The steepness of a graph.
Linear Equation	Produces a straight line graph.
Average Speed	$\frac{\text { distance travelled }}{\text { time taken }}$
Line Segment	Has a start and end point.
Midpoint	Exactly in the middle of a line segment.
Rate of Change	Describes how a quantity changes over time.
Velocity	Speed in a particular direction.
Y-intercept	Where the graph crosses the y -axis.
Parallel Lines	Same distance apart and will never cross each other. They have the same gradient.
Line of best fit	Refers to a line through a scatter plot of data points that best expresses the relationship between those points.
Trend	A pattern in a set of results displayed in a graph.
Correlation	Refers to the degree of correspondence or relationship between two variables.

There are 4 types of transformations: reflection, rotation, enlargement and translation.

Perpendicular lines cross each other at right angles.

Coordinates can
 be plotted in all
 four quadrants.

When completing a reflection, make sure each vertex of the image is the same distance from the mirror line as its corresponding vertex on the object.

Rotations require an angle and centre Aside from 180° ($1 / 2$ turn), they should also have a direction - clockwise or anticlockwise.

Transformation	A transformation is a way of changing the size or position of a shape.
Enlargement	An increase or decrease in size. Multiply all the side lengths by the same number (scale factor).
Scale Factor	Describes the size of an enlargement or reduction.
Translation	Slide/move - all the points on the shape move the same distance in the same direction.
Column Vector	Used to describe a translation. Gives direction and magnitude.
Describing a rotation	Two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.
Describing a reflection	State it is a rotation and give the coordinate of the centre of rotation, and the angle and direction.
Similar	When two figures are similar, the ratios of the lengths of their corresponding sides are equal.
Object	State it is an enlargement and give the scale factor and coordinates of the centre of enlargement.
The mirrope.	
When the object is transformed, the resulting shape is	
the image.	

As long as you know that the two shapes are similar, you can use one dimension on both figures to calculate

 the scale factorthe scale factor

```
You can simplify a fraction if the
numerator (top number) and
denominator (bottom number) can
both be divided by the same number.
```

Foundation - Unit 11 - Ratio and Proportion

The equation of a straight line uses (x, y) coordinates with the gradient and y-intercept.

A table of values is used to graph a line according to its equation. The x value is substituted into the equation, then the equation is solved for y.

A bar chart or bar graph is a chart or graph that presents categorical data with rectangular bars with heights or lengths pro portional to the values that they represent. The bars can be plotted vertically or horizontally.

A ratio compares values. A ratio says how much of one thing there is compared to another thing.

Ratio	A way to compare two or more quantities.
Simplest Form	You cannot divide the values any further and have them still be integers..
Integers	Whole numbers.
Highest Common Factor	The largest integer which is a factor of both.
Equivalent Ratios	Represent the same quantities, or have the same simplest form.
Proportion	Compares a part with a whole.
Unit Ratios	One of the numbers is n. This makes it easier to compare ratios.
Direct Proportion	When one is a multiple of the other.
Indirect/Inverse Proportion	When one value increases and the other decreases.

[^1]Page 19

Foundation - Unit 12 - Right-angled Triangles

Foundation - Unit 13 - Probability

You can simplify a fraction if the numerator (top number) and denominator (bottom number) can both be divided by the same number.

To add fractions there are Three Simple Steps: Make sure the bottom numbers (the denominators) are the same. Add the top numbers (the numerators), put that answer over the denominator. Simplify the fraction (if needed)

A two-way table is a way to organise data about two specific variables.

To multiply

 decimals,first multiply as if there is no decimal. Next, count the number of digits after the decimal in each factor. Finally, put the same number of digits behind the decimal in the product.

Frequency tree	Show the number of options for different choices.
Dependent Events	When the outcome of one event changes the possible outcomes of the next event. The second event is dependent on the first.
Mutually Exclusive	Events which cannot happen at the same time.
Relative Frequency	An estimate of the probability.
Exhaustive List	All the possible outcomes. Probabilities of an exhaustive set of mutually exclusive events sum to 1 .
Sample Space Diagram	Shows all the possible outcomes. You can use it to find a theoretical probability, based on equally likely outcomes.
Independent Events	When the results of one do not affect the results of the other.
$A \cap B$	The intersection of A and B. This is the elements that are in A and in B.
$A \cup B$	The union of A and B. This is the elements that are in A or in B or in both.
A^{\prime}	The elements not in A .

Substitution is the name given to the

 process of swapping an algebraic letter for its valueTo calculate a percentage of an amount, use combinations of simple calculations.

Mass = density x volume.

Density is normally measured using units of $\mathrm{g} / \mathrm{cm}^{3}$ for smaller amounts, and $\mathrm{kg} / \mathrm{m}^{3}$ for larger amounts.

In a linear equation (equation of a straight line)
the gradient is the coefficient of x.

A prism has the cross section the same all along its length.
Volume $=$ area of cross section \times length

Index notation is a way of representing repeated multiplications of the same number, by writing the number as a base with the number of repeats.

A ratio shows how much of one thing there is compared to another. Ratios are usually written in the form a:b.

Velocity and initial velocity are vector quantities.

Velocity is the speed

 in a given direction. Possible units are m / s| Direct Proportion | Pairs of values in the same ratio. When one value is 0 , so it the other (passes through (0,0). |
| :---: | :---: |
| Compound Interest | The interest earned each year is added to money in the account and earns interest the next year. |
| Growth | Increases in quantity. |
| Decay | Decreases in quantity. |
| Density | The mass of a substance contained in a certain volume. It is usually measure in grams per cubic centimetre $\mathrm{g} / \mathrm{cm}^{3}$. |
| Pressure | The force of newtons applied over an area in cm^{2} or m^{2}. It is usually measure in newtons N per square metre N / m^{2} or square centimetre $\mathrm{N} / \mathrm{cm}^{2}$. |
| Kinematic Formulae | The features or properties of motion in an object. |
| Final Velocity, v | The velocity which the object has at the end of the given time period. |
| Initial velocity, u | Speed in a given direction at the start of the motion. |
| Acceleration, a | Rate of change of velocity, $\mathrm{m} / \mathrm{s}^{2}$ |

Parallel lines are in the same plane that never intersect. They are always the same distance apart.

Perpendicular lines are lines that meet at a right angle, that is, at an angle that measures 90°.

Foundation - Unit 15 - Constructions, Loci and Bearings

Region	An area bounded by loci.
Net	A 2D shape that folds to make a 3D shape.
Scale	A ratio that shows the relationship between a length on a map or drawing and the actual length.
A set of points the obey a given rule. This produces a path	
followed by the points.	

Substitution - replace the letter with a

value and complete the calculation.

Factor - a number that does into another

number. Eg Factors of 12: 1, 12, 2, 6, 3, 4

Multiple - a number that is in the times
table. Eg multiples of 3: 3, 6, 9, 12, 15

A line of symmetry is a line that cuts a shape exactly in half. This means that if you were to fold the shape along the line, both halves would match

 exactly.Coordinates display the position of a certain point. These positions are marked according to numbers of the

Expand Double Brackets	Multiply each term in one bracket by each term in the other.
Square a bracket	Multiply it by itself.
Quadratic Expression	Always has a squared term. It cannot have a power higher than 2 . It may also have a term with a power of 1 . It may also have a constant.
Quadratic Function	Has a symmetrical U shape curve called a parabola. A $\left(-x^{2}\right)$ term has a symmetrical n-shaped curve.
Turning Point	A quadratic curve always has a maximum or minimum turning point. This is where the graph changes direction.
Factorise quadratics	To factorise a quadratic $a x^{2}+b x+c$, you need two numbers whose product is c and whose sum is b.
Difference of Two Squares	A quadratic expression with two squared terms, and one is subtracted from the other.

Foundation - Unit 17 - Perimeter, Area and Volume 2

Circumference of a circle	The perimeter of a circle.
Area of a circle	The space inside a circle.
Chord	A line through a circle that touches the circumference at each end.
Arc part of the circumference.	
Tangent	A line outside a circle that touches the circle at only one point.
Sector	A slice of a circle between an arc and two radii.
Cylinders	A part of a circle between an arc and a chord. Segment
	Surea $=2 \pi r^{2}+\pi d$

> To simplify a fraction, Divide the numerator and denominator by the greatest common factor.

Multiplying by 10 - all digits
 move one place to the left

Dividing by 10 - all digits move one place to the right

Multiplying by 100 - all digits move two places to the left

Dividing by 100 - all digits move two place to the right

Ordering Directed Numbers - You need to be able to put negative and positive numbers in size order.

Foundation - Unit 18 - Fractions, Indices and Standard Form

Comparing Fractions	To compare fractions, write them with the same denominator then compare numerators.
Multiply Fractions	Multiply the numerators and multiply the denominators.
Fraction of an Amount	Divide by the denominator, multiply by the numerator.
Uractions	Write them with a common denominator then add or subtract the numerators.
A unit fraction has a numerator of 1.	
Base number	This is the number that is being multiplied by itself.
Index (Power)	The small number written above the base quickly.

If one shape can become another using Turns, Flips

 and/or Slides, then the shapes are Congruent.Translation - a type of transformation which moves the object.
Usually shown with a vector.

Negative, Down
Positive, Up
The midpoint is the middle point of a line segment. It is equidistant from both endpoints. equal length are marked with dashes.

The Pythagorea n (or Pythagora s) Theorem is $a^{2}+b^{2}=$ \mathbf{c}^{2} where \mathbf{c} is the hypotenuse while \mathbf{a} and \mathbf{b} ar e the legs of the triangle.

Angles in a
triangle add triangle add to 180°.

An equilateral triangle has 3

 sides of equal length. The dashes on the lines show they are equal in length.An isosceles triangle has 2 sides of equal length. The dashes on the lines show they are equal in length. The angles at the base of the equal sides are equal.

Enlarging a shape changes its size.

When the scale factor is fractional and the shape decreases in size, we still call it an enlargement.

Foundation - Unit 19 - Congruence, Similarity and Vectors

Congruent Triangles	Triangles are congruent if they are the same shape and size but reflected, rotated or translated.
SSS Side, Side, Side: all three sides equal.	
SAS	Side, Angle, Side: two sides and the included angle are equal.
AAS	Angle, Angle, Side: two angles and a corresponding side are equal.
Corresponding Angles	When two lines are crossed by another line the angles in matching corners are called corresponding angles.
Alternate angles	
hypotenuse and one other side are equal.	

Maths

sum	Add the values
difference	Subtract the values
product	Multiply the values
Cubic function	Contains x^{3} but no higher power of x.
Reciprocal function	Obtained by finding the inverse of a given function. Asymptote never that the graph gets closer and closer to but

Eukaryotes complex organisms

animal cell	cytoplasm	Site of chemical reactions in the cell.		Gel-like substance containing enzymes to catalyse the reactions.	
	nucleus	Contains genetic material.		Controls the activities of the cell and codes for proteins.	
	cell membrane	Semi-permeable.		Controls the movement of substances in and out of the cell.	
	ribosome	Site of protein synthesis.		mRNA is translated to an amino acid chain.	
	mitochondrion	Site of respiration.		Where energy is released for the cell to function.	
plant ce	contains all the parts of animal cells plus:			Transporting substances	
	permanent vacuole	Contains cell sap.	Keeps cell turgid, contains sugars and salts in solution.	Diffusion	Movement of particles from a higher to a lower concentration e.g. O_{2} and CO_{2}.
				Osmosis	Movement of water from a dilute solution to a more concentrated solution e.g. Plants absorb water from the soil.
	cell wall	Made of cellulose.	Supports and strengthens the cell.		
	chloroplast	Site of photosynthesis	Contains chlorophyll, absorbs light energy.	Active transport ENERGY required	Movement of particles from a dilute solution to a more concentrated solution e.g. movement of mineral ions into roots of plants.

Prokaryotes \begin{tabular}{c}
cell

membrane

 Semi-permeable.

Controls the movement of

substances in and out of the cell.
\end{tabular}

Enzymes catalyse (increase the rate of) specific reactions.

Y9 Science Biology Topic 2 - Cells and Control

Key Terms / Words	Definition
asexual reproduction	Producing new organisms from one parent only. These organisms are genetically identical to the parent.
cancer cell	Cell that divides uncontrollably.
cell cycle	A sequence of growth and division that happens in cells. It includes interphase and mitosis and leads to the production of two daughter cells that are genetically identical to the parent cell.
interphase	The stage when the cell prepares itself for the process of cell division, and DNA replication takes place. The cell also makes more of its sub-cellular structures.
mitosis	The process of cells dividing to produce two daughter cells that are genetically identical to the parent cell.
differentiation	When a group of similar things, such as cells, become different in form from each other.
meristem	A small area of undifferentiated cells in a plant, near the shoot tips and root tips, where cells are dividing rapidly by mitosis.
sensory neurone	Neurone that carries impulses from receptor cells, towards the central nervous system.
motor neurone	Neurone that carries impulses to effectors.

$\begin{gathered} \text { Stage } \\ 1 \end{gathered}$	Interphase (not part of mitosis)		Before mitosis: Increase the number of sub-cellular structures e.g. ribosomes, mitochondria. DNA replication makes copies of chromosomes.					
Stage 2	Prophase		Nucleus breaks down and spindle fibres appear.		Information from receptors passes along cells (neurones) as electrical impulses to the central nervous system (CNS)			
$\begin{gathered} \text { Stage } \\ 3 \end{gathered}$	Metaphase		Chromosomes are lined up on spindle fibres on the equator (middle) of the cell.		The CNS is spi	rain and the ord.		
$\begin{gathered} \text { Stage } \\ 4 \end{gathered}$	Anaphase		Chromosome copies are separated and pulled to opposite ends of the cell.		Reflex actions	automatic and		
Stage 5	Telophase		A new nuclear membrane forms around each set of chromosomes.		Stimulus	Touch hot object		
Stage 6	Cytokinesis		Cell surface membrane forms to separate the cells (+new cell wall in plants).		Receptor	Cells in skin		
Human Embryonic stem cells		Can differentiate into any cell type		Therapeutic cloning of stem cells to produce new tissue uses same genes so the body does not reject the tissue. Can be a risk of infection	Sensory neurone	CNS		
		Relay neurone in CNS	CNS					
Adult stem cells				Can differentiate into a limited number of human cells e.g. blood cells		Tissue made fr is matched to a	Motor Neurone	CNS
		of infection. On cells can be for	Effector			Muscles connected to arm		
Meristems (plants)		Can differentiate into any plant cell type throughout the life of Page 30 the plant.		Used to produc and economicall				
		species, crop p /disease resisit		Response	Hand moves			

The Periodic Table of the Elements

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Key information

atom	Made up of a nucleus containing protons and neutrons, surrounded by electrons. They have neutral charge.
nucleus	Very small central region of an atom containing protons and neutrons. Most of the atom's mass is found in the nucleus.
proton	Found in the nucleus. Have a relative charge of +1 and a relative mass of 1. Elements of the same type have the same number of protons in their nuclei.
neutron	Found in the nucleus. Relative charge of 0 and a relative mass of 1.
electron	Found on shells around the nucleus. Have a relative charge of -1 and a relative mass of 1/1835 (negligible)
All atoms have a neutral charge	Atoms contain equal numbers of positively charge protons and negatively charged electrons. This gives them a neutral charge or charge equal to zero.
mass number (A)	Represents the total number of protons and neutrons in the nucleus of an atom (symbol A). Also known as the nucleon number.
atomic number (Z)	Represents the number of protons in the nucleus of an atom (symbol Z). Also known as the proton number. This number is unique to the element e.g. only oxygen atoms have an atomic number of 8.
isotope	Atoms of the same element that have the same numbers of protons but different numbers of neutrons (in their nuclei)
electronic configuration	Refers to the number of electrons found on each electron shell of an atom and is related to the position of atoms in the periodic table.
Relative atomic mass (Ar)	The mean relative mass of the atoms of different isotopes in an element. It is the number of times heavier and atom is than $1 / 12$ of a carbon-12 atom. e.g. relative mass of magnesium atom is 24. This means it is 24 times heavier than 1/12 of a Carbon-12 atom.

Calculating protons,

 neutrons and electrons in(protons + neutrons)

Relative atomic mass

Chlorine appears to have a mass number of 35.5 however, this does not mean it has half a neutron.
Instead, it represent the mean mass of all the chlorine atoms in the universe.
Scientists discovered that 75% of all Cl atoms had a relative ass of 35 and the remaining 25% Padike mass of 37 (the percentage is referred to as the abundance). The mean mass can be calculated and is referred to as the relative atomic mass. See the calculation of relative atomic mass to the right \rightarrow

Modern periodic table

 called periods.
Sodium (Na) atom

Protons = atomic number = $\mathbf{1 1}$
Electrons = protons $=11$
Neutrons = mass number - atomic number
$=23-11=12$
First 2
Second 8
Third 8
(abundance of isotope $1 \times$ mass of isotope 1$)+($ abundance of isotope $2 \times$ mass of isotope 2)
100

So, for chlorine:

Relative atomic mass $=\frac{(75 \times 35)+(25 \times 37)}{100}=35.5$

Y9 Science - Chemistry - Topic 1 - Key concepts in chemistry - Atomic structure and periodic table

The periodic table

Series	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
1	H1							
2	47	Be 9.4	811	C 12	N 14	016	F 19	
3	Na 23	Mg 24	Al 27.3	Si28	P31	S 32	C135.5	
4	к39	Ca 40	344	Ti48	V51	Cr 52	Mn 55	$\begin{array}{ll} \text { Fe } 56 & \text { Co } 59 \\ \text { Ni } 59 & \text { Cu } 63 \\ \hline \end{array}$
5	(Cu63)	Zn 65	368	772	As 75	Se 78	Brso	
6	Rb 85	Sr 87	Y88	2 t 90	Nb 94	Mo 96	7100	Ru 104 Rh 104 Pd 106 Ag 108
7	(Ag 108)	Cd 112	In 113	Sn 118	Sb 122	Te 125	1127	
8	Cs 133	Ba 137	Di 138	Ce 140				
9								
10			Er 178	La 180	Ta 182	W184		Os 195 Ir 197 Pt 198 Au 199
11	(Au 199)	Hg 200	T1204	Pb 207	Bi 208			
12				Th 231		U240		

The early periodic table (left) was developed by Mendeleev.

- Mendeleev placed the elements in order of increasing relative atomic mass.
- He switched the order of some elements to line up elements up with similar chemical properties (pair reversal - lodine and tellurium)
- He also left gaps for undiscovered elements.
- He used his table to predict the existence and properties of undiscovered elements.
- Elements are arranged in order of increasing atomic number (number of protons), in rows which are
- Elements with similar properties are found in the same vertical columns which are known as groups.
- The group number tells us the number of electrons in the outer shell of the element e.g. Lithium is in group 1 so it has 1 electron in its outer shell.
- The period number tells us the number of electron shells. occupied e.g. Aluminium is in period 3 so has electrons occupying three electron shells.
- 'steps' - left of steps are metals and to the right of the steps are non-metals

Electron configuration (elements 1-20 ONLY) The electron arrangement of an atom can be worked
Electrons occupy the shells in order starting with the shell closest to the nucleus.
Shell Max. number of electrons out from its atomic number. For example, the atomic number of sodium is 11 . Sodium atoms have 11 protons and so 11 electrons.
2 electrons occupy the first shell 8 electrons occupy the second shell 1 electron occupies the third shell

Key information	
States of matter	Solid, liquid and gases are the three states of matter.
Physical change	A reversible process that does not result in the formation of a new substance e.g. melting
Chemical change	Difficult to revers (irreversible) result in the formation of new substance e.g. chemcial reactions result in chemcial changes.
melting point	Temperature at which a substance changes from the solid state to the liquid state when heated; or from the liquid state to the solid state when cooled.
boiling point	Temperature at which a substance changes from the liquid state to the gas state when heated; or from the gas state to the liquid state when cooled.
Solute	Substance dissolved in a solvent to form a solution.
Solvent	Liquid used to dissolve a solute to form a solution.
Solution	Formed when a solute dissolves into a solvent
Soluble	A substance that can dissolve (in a given solvent) e.g. salt in water
Insoluble	A substance that cannot dissolve (in a given solvent) e.g. sand in water
Pure	A single element or compound that has a fixed composition. substance can be separated relatively easily.
Mixture	Used to describe water that is suitable for drinking.

Y9 Science - Chemistry - Topic 2 -
 States of matter and separation

Heating curve

Changes of state (physical changes)

Evaporation, melting and sublimation all require energy to be transferred from the surroundings to the particles.
Condensing, freezing and deposition require energy to be transferred from the particles to the surroundings.

A to B-Solid phase
Particles held in a fixed position, begin to vibrate more as temperature increases.

B to $C-$ Melting point
Energy is used to overcome forces of attraction between particles. Particles become randomly arranged.

C to D-Liquid phase
Particles can move past each other and are moving more rapidly.

Example of mixture

Sand and water

Salt and water
separate the different colours of dye found in in.

Separate water from salt water
Separate water and ink
Separate crude oil

Core practical - Chromatography

The chromatography paper is placed in a solvent, the solvent has to be below the start line (drawn in pencil) as the solvent (mobile phase) is absorbed through the paper (stationary phase) the mixture of colour compounds separate at different rates. More soluble substances travel further up the paper.

Drinking water and water

treatment

Waste water can be used to produce potable drinking water.

The processes used include:

1. Sedimentation - where impurities settle to the bottom the their container
2. Filtration - to remove insoluble substances
3. Chlorination - Chlorine added to kill microorganism

Y9 Science Physics Topic 1 Key concepts

Total Energy in $=$ Useful Energy out + Wasted Energy

Useful prefixes (but always remember kg is the exception to the rule!)

tera	giga	mega	kilo	Standard unit	centi	milli	micro	nano	pico
T	G	M	k		C	m	μ	n	p
X10 ${ }^{12}$	X10 ${ }^{9}$	X10 ${ }^{6}$	X10 ${ }^{3}$		X10-2 ${ }^{\text {Page }} 34$	X10-3	X10 ${ }^{-6}$	X10-9	X10 ${ }^{-12}$

Y9 Science Physics Topic 2 Motion and Forces

THE ANATOMY OF A DISTANCE-TIME GRAPH

THE ANATOMY OF A SPEED-TIME GRAPH

Key Term	Definition
Resultant force	The overall force acting on an object, i.e. the vector sum of all the forces acting on an object.
Acceleration	$a=\frac{v-u}{t}$ a, acceleration (m/s2) v, final velocity (m/s) u initial velocity (m/s) t, time taken (s)
Suvat equation	X is the displacement of the object. NB this equation only apply for constant acceleration.
Resultant force	F, force (N) M, mass (kg) a, acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Y9 Physics Topic 3 Conservation of Energy.

The Key Ideas

Key Term	Definition
Law of conservation of energy	Energy cannot be created or destroyed, but it can be transferred between stores. No energy transfer is 100% efficient, some energy is always wasted.
Thermal conductivity	The rate at which heat is transferred through a substance. Low thermal conductivity materials are good insulators.
Main energy stores	Kinetic, thermal, gravitational, nuclear, elastic electrostatic and magnetic energy stores.
Energy pathways	Are the ways in which energy is transferred i.e: * Mechanically (when a force does work on an object) * Electrically when a force does work on an electric charge * Radiantly, when a wave (e.g. light or sound) transfers energy from one place to another. * Thermally, when a difference in temperature between objects causes a change in temperature of the objects.
dissipated	When energy is transferred to the surroundings and is less concentrate and so less useful.
Efficiency definition	The ratio of useful energy out to total energy in.
Efficiency equation	Efficiency = (useful energy out) / (total energy in)
Closed system (a group of objects)	has no energy transfers in our out of the system so there is no net energy change for the system.

Sankey Diagrams show energy transfers e.g.

Energy is an accounting system.
Energy is measured in joules (J).
Work done = energy transferred.

Key term	Equation
Law of conservation equation	Total energy in = useful energy out + wasted energy out
Efficiency equation	$E f f=\text { (useful energy out) } / \text { (total energy in) }$ Efficiency is always a decimal less than 1.00 It's only a \% when multiplied by 100 .
Change in gravitational potential energy store	$\Delta . \text { G.P.E }=m \times g \times \Delta h$ $\Delta G P E$: change in gravitational potential energy (J) m, mass (kg) g, gravitational field strength (N / kg) Δh, change in vertical height above ground.(m)
Kinetic Energy Store	$\begin{gathered} \text { K.E. }=0.5 \times \mathrm{m} \times(\mathrm{V})^{2} \\ \text { K.E. Kinetic energy store (J) } \\ \mathrm{m}, \text { mass }(\mathrm{kg}) \\ \mathrm{v} \text {, speed or velocity }(\mathrm{m} / \mathrm{s}) \end{gathered}$
Work done (energy transferred)	$E=F \times d$ E, energy or work done (J or NM) F, force (N) d, distance moved in the direction of the force (me)

Unwanted energy losses are reduced by, streamlining, lubrication insulation.

Practical

Explaining the energy changes of a can of soup rolling down a ramp.

At the top of the ramp the can has no K.E. but some G.P.E.

At the bottom of the ramp G.P.E. store has decreased. Energy has been transferred mechanically to the K.E. store of the can and the thermal energy store in the can and surroundings.

The loss of GPE is calculated using Δ.G.P.E $=\mathrm{mxgx} \Delta \mathrm{h}$
The KE at the bottom of the ramp is calculated using :
K.E. $=0.5 \times \mathrm{mx}(\mathrm{v})^{2}$

The speed at the bottom of the ramp has to be determined by measuring distance and time and using the equation speed = distance / time. Light gates and a data logger could be used to do this.

The difference between Δ GPE and KE will be the energy lost to the thermal energy store.
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Key } \\ \text { term }\end{array} & \text { Definition } \\ \hline \begin{array}{l}\text { Permanent } \\ \text { magnets }\end{array} & \begin{array}{l}\text { Produce a magnetic field } \\ \text { around them which exerts a } \\ \text { non-contact force on a } \\ \text { magnetic material (or a } \\ \text { moving electrical charge). }\end{array} \\ \hline \begin{array}{l}\text { Induced } \\ \text { Magnet }\end{array} & \begin{array}{l}\text { A material which can be made } \\ \text { temporarily magnetic. An } \\ \text { electromagnet is an example } \\ \text { of this. }\end{array} \\ \hline \begin{array}{l}\text { Magnetic } \\ \text { materials }\end{array} & \begin{array}{l}\text { Can be attracted by } \\ \text { permanent magnets. Not all } \\ \text { metals are magnetic. Iron, } \\ \text { nickel and cobalt are the three } \\ \text { magnetic metals. }\end{array} \\ \hline \begin{array}{l}\text { Magnetic } \\ \text { field lines. }\end{array} & \begin{array}{l}\text { These are not real but } \\ \text { represent the strength and } \\ \text { direction of the magnetic } \\ \text { force on a North pole of a } \\ \text { magnet, they always point } \\ \text { from N to S. }\end{array} \\ \hline \begin{array}{l}\text { Independent } \\ \text { Variable }\end{array} & \begin{array}{l}\text { The variable that is changed in } \\ \text { an experiment. }\end{array} \\ \hline \text { Dtronger the magnetic field. } \\ \text { Variable }\end{array} \quad \begin{array}{l}\text { The variable that is measured } \\ \text { in an experiment. }\end{array}, \begin{array}{l}\text { Variables that are controlled } \\ \text { in an experiment to ensure a } \\ \text { fair test. }\end{array}\right\}$

Magnetic field lines run from north to south.

Magnetism is a non-contact force. All magnets have a north and a south pole.
Like poles repel. This means that the two poles will push away from each other.
Opposite poles attract. This means that the invisible magnetic force between the magnets will force the poles together.
The Earth has a magnetic inner core made of iron.

Electromagnets

The magnetic field strength of the electromagnet can be increased by,

- Increasing the current.
- Increasing the number of turns in the coil.
- Using a thicker iron core.

The needle of the compass aligns with the magnetic field, point in the direction of North Magnetic Pole telling you which direction is North.

Earth's magnetic field deflects most of the solar wind, whose charged particles would otherwise strip away the ozone layer that protects the Earth from harmful ultraviolet radiation.

Todmorden High Science

Rocks and Space

Key term	Definition
eruption	When lava or ash comes out of a volcano.
cement	A building material made using limestone and other materials. It also means 'to stick things together'.
porous	Porous rocks have tiny holes in them. They are permeable and let water soak through them.
igneous rock	Rock made from interlocking crystals that are not in layers. Formed when magma or lava cooled down and solidified.
sedimentary rock	A rock formed from grains stuck together. The grains are often rounded.
metamorphic rock	A rock formed from interlocking crystals that are often lined up in layers. It is formed when existing rocks are heated or compressed.
extrusive	Igneous rocks formed when lava freezes above the ground.
intrusive	Igneous rocks formed when magma freezes underground.
weathering	When rocks are broken up by physical, chemical or biological processes.
orbit	The path that a planet takes around a star, or the path that a moon or satellite takes around a planet.
planet	A large object orbiting a star. The Earth is a planet.
morthern hemisphere	The The half of the Earth with the North Pole in it. around it.
atanets and other objects orbiting	
at different times.	oval-shaped
A natural satellite of a planet.	

Rock textures

Rocks are made of grains. Each grain is made of a naturally occurring compound called a mineral. The texture of a rock is a description of the size and shape of the grains.

The Solar System
We live on a planet called the Earth. The Earth gets energy from the Sun. The Earth spins on its axis once every 24 hours. The side of the Earth facing the Sun has daylight, and it is night on the side facing away from the Sun. The Earth orbits around the Sun. It takes one year to go around once. The Moon is a satellite of the Earth. We can see the Moon because it reflects light from the Sun. The Moon seems to change shape. The different shapes are called phases of the Moon. The phases happen because we cannot always see all of the part that is lit by the Sun. There are eight planets in elliptical (oval-shaped) orbits around the Sun Most of the planets have moons orbiting around them. The Sun, the planets and their moons make up the Solar System.
The eight planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.

Seasons

The Earth's axis is tilted. When the northern hemisphere is tilted towards the Sun it is summer in the UK. Days are longer than nights, and the Sun is higher in the sky. The Sun's rays are more concentrated, so it feels hotter.

This is why we get different seasons.

During this term you will be learning about the Mexican festival of Day of the Dead and the cultural significance of the festival. You will also be developing your skills with drawing realistic portraits. We will then join these topics together by creating your own half face and half sugar skull final piece using shading techniques and coloured ink.

KEY WORDS

COMPOSITION - The layout of a piece of work.
PROPORTION - The size of parts of something compared to other parts.
SKETCH- Creating light lines when starting out a drawing.
TONE - Adding areas of shadow or dark to an image, another word for shading.
SCALE - The size or level of something.
REFINE- Last finishing touches to a piece of work to improve it
MONOCHROME - Black and white or many shades of the same colour.

ELEMENTS OF ART

The elements of art are the key terms that a piece of work will always link to. A piece may not link to all but will always link to some of these.
LINE - Sketching or creating any outline in our work.
SPACE - Creating the sense of an area in our work like a landscape.
FORM - Three dimensional shapes.
SHAPE - Two dimensional shapes
TONE - Any area of shading
COLOUR - Adding of pigment
TEXTURE - How something feels like fur or scales

Hatching

Cross-hatching

Contouring

SHADING TECHNIQUES

Shading or tone helps to add depth to our work and make things look three dimensional. There are different ways you can apply tone using shading techniques called HATCHING, CROSS HATCHING AND CONTOUR HATCHING.

Blend out these shading techniques by spacing out the lines and applying less pressure.

REFERENCE IMAGE

A reference image is the picture we use to create a piece of work from. You should always fold a reference image into sections and then section your drawing page in the same way. We do this because we can then draw box by box and concentrate 3 Bn smaller sections. It also helps with accuracy and proportion of our drawing.

COLOUR THEORY

Colour theory helps us use colour more effectively. We use a colour wheel to help us with this. You can find out how to mix a colour by looking at the colours either side of it on a colour wheel.

PRIMARY COLOURS - The base colours that cannot be mixed are RED, BLUE and YELLOW.

SECONDARY COLOURS - Created when mixing two primary colours together are ORANGE, GREEN and PURPLE.

COMPLIMENTARY COLOURS - Opposite each other on the colour wheel and work well together in artwork.

HARMONIOUS COLOURS - Next to each other on the colour wheel and blend easily together.

YEAR 9-TERM 2 STILL LIFE \& ROY LICHENSTEIN

During this term you will be learning about the work of Roy Lichenstein and the Pop Art movement. We will be learning about still life art work and how to draw a piece of Lichenstein's work accurately and apply acrylic paint effectively. We will then combine this style of work with a photograph of a still life to create a unique Pop Art still life.

KEY WORDS

COMPOSITION - The layout of a piece of work
PROPORTION - The size of parts of something compared to other parts.
SKETCH- Creating light lines when starting out a drawing.
TONE - Adding areas of shadow or dark to an image, another word for shading.
SCALE - The size or level of something
REFINE- Last finishing touches to a piece of work to improve it.
MONOCHROME - Black and white or many shades of the same colour.

ELEMENTS OF ART

The elements of art are the key terms that a piece of work will always link to. A piece may not link to all but will always link to some of these.
LINE - Sketching or creating any outline in our work.
SPACE - Creating the sense of an area in our work like a landscape.
FORM - Three dimensional shapes.
SHAPE - Two dimensional shapes
TONE - Any area of shading
COLOUR - Adding of pigment
TEXTURE - How something feels like fur or scales

SHADING TECHNIQUES

Shading or tone helps to add depth to our work and make things look three dimensional. There are different ways you can apply tone using shading techniques called HATCHING, CROSS HATCHING AND CONTOUR HATCHING.

Blend out these shading techniques by spacing out the lines and applying less pressure.

REFERENCE IMAGE

A reference image is the picture we use to create a piece of work from. You should always fold a reference image into sections and then section your drawing page in the same way. We do this because we can then draw box by box and concentrate 48 n smaller sections. It also helps with accuracy and proportion of our drawing.

COLOUR THEORY

Colour theory helps us use colour more effectively. We use a colour wheel to help us with this. You can find out how to mix a colour by looking at the colours either side of it on a colour wheel.

PRIMARY COLOURS - The base colours that cannot be mixed are RED, BLUE and YELLOW.

SECONDARY COLOURS - Created when mixing two primary colours together are ORANGE, GREEN and PURPLE.

COMPLIMENTARY COLOURS - Opposite each other on the colour wheel and work well together in artwork.

HARMONIOUS COLOURS - Next to each other on the colour wheel and blend easily together.

Programming Concepts (Term 1)

Knowledge	
Lists: Lists store multiple items in one variable. Each item in a list is accessed using an index 0,1,2 etc.... Indexing always starts at (Zero). \square 0 So in the above example, line 5 will print out Monday - which is the first item in the list called days[]	Selection: if condition : block of statements elif \square condition block of statements else:

Conditional Loops (Iteration)

Boolean

Operators

A piece of software used to help a programmer develop programs (e.g., MU).

Algorithm	A step-by-step set of rules or instructions to complete a task.
Pseudocode	An algorithm written in the style of a programming language but using plain English.
Syntax	The rules/grammar of a programming language.
Variable	Is a memory location to hold a value in a program (eg, Score $=1$).
Iteration	A programming statement which makes the program repeat a set of instructions.
Selection	A programming statement which cause the program to make a choice and flow in a given direction.
String	A data type to store text.
Integer	A whole number which can be either positive or negative
List (Arrays)	Lists are used to store multiple items in a single variable.
Mathematical Operators	Are symbols used in programming to carry out calculations (eg, / * + DIV MOD).
Boolean	A logical system using AND, OR and NOT. Takes one or two inputs resulting in a TRUE or FALSE output.
Operators	(

For

A for loop will repeat a section of code for a set number of times. In the example above the program will print out each (item) for every item in the list (i.e. 5 times)

```
shopping = ["Pasta", "Tomatoes",
```

shopping = ["Pasta", "Tomatoes",
"Onions", "Basil",
"Onions", "Basil",
"Onions", "Basi
"Onions", "Basi
print("Buy:")
print("Buy:")
5 for item in shopping:
5 for item in shopping:
6 print(item)

```
    6 print(item)
```

\square

Audio	
Analogue	Continuous data that can have a range of values.
Digital	Information that can be stored as discrete numbers (e.g. Binary Os and 1s).
Sample	Digital representation of an analogue signal.
Sample rate	How many samples are taken per second.
Bit rate	The number of bits stored per second.
Compression	Reducing the size of a file.
Visual	

Know	dge
Audio	
Sampling is the process of taking measurements of an analogue sound wave at regular intervals. These measurements can then be stored as a series of binary digits (Bits)	Visual
	Representing images in digital
	format
	Digital pictures are formed out of individual pixels (picture elements),
$10 ¢$	mosaics are formed out of individual
	pieces of glass or stone. However, unlike their ancient counterparts, the
	elements in digital pictures are aligned in rows and columns, with the colour of each element represented as a sequence of binary digits.
Source: https://bam.files.bbci.co.uk/bam/live/c	-
ontent/zyg72hv/large	111111000000000011111 11001001101010011800 11001000010101001000
If these measurements are takenmore frequently, this will result in a	
more accurate representation of the original analogue sound wave.	
However, this will also lead to larger file sizes as more bits will need to be stored.	Resolution Is the number of pixels displayed on
Bit Rate is a measure of how much data is processed for each second of sound.	a screen. The more pixels that can be displayed, the better the picture quality. 4 K resolution, at least the way most TV companies define it, is
Bit Rates for MP3 files range from 16 kilobytes per second (kbps) to 320 kbps . Page 42	3840×2160 pixels, or 2160 p. That means the screen will have approx. 8
	million pixels.

Year 9 Digital Literacy

Databases

	KEY vocABULARY
Database	Large collection of data. Can be paper or computerised
Field	Single piece of data about a person or an object.
Record	All of the data about a person or an object.
Table	Contains a set of database records.
Query	A search result based on specific criteria.
Form	User-friendly way to enter data into a database.
Validation	Check to see what has been entered is allowable.
Data Type	Tells the database how you want the data to be stored.
Primary Key	Field within a database which enables every record to be uniquely identified.

Data types		
Type	Description	Example
Number	Can be positive, negative and decimals.	2.56 (Average number of thefts)
Currency	Number including monetary values.	$£ 2.00$ (Price)
Boolean	Value that can either be true or false.	Yes (Do you have food allergies)
Auto number	Generates a unique number.	14526 (Student ID Number)
Date and time	Date and times in different formats.	$05 / 06 / 10$ (Student Date of Birth)

Advantages and disadvantages of computerised databases

Advantages:

- Easy to make backup copies.
- Changes are updated automatically.
- Easy to sort data into order eg, alphabetically
- Search thousands of records quickly

Disadvantages:

- Can be difficult to set up and you may have to get a professional to make it.
- Can be accessed and changed illegally (hacked)

Real world examples

Patient Records

Pupil Data

Online product list

amazon

\rightarrow

- You need to have a computer.

Year 9 Design and Technology

MARDWOODS

Materials and their Properties: Timbers \& Manufactured Boards

SOFTWOODS
 Manufactured Boards

They are coniferous trees which means that they
keep their leaves in winter = evergreen.
These trees are tall and 'Christmas tree' tree shaped. Overall they tend to be easier to work with and less expensive than other types of timbers. They are more porous (holes) and if unprotected will rot. They have cones for leaves and grow quickly.

Types:

Name	Characteristics	Uses
Ash	Flexible, tough and shock resistant, laminates well. Pale brown/cream.	Sports equipment and tool handles.
Beec	Fine finish, tough and durable. Dense close grain with an	Children's toys, models and furniture.
Oahog	Easily worked, durable and finishes well. Rich reddish brown in	High end furniture and joinery.
	Tough, hard and durable, high quality finish possible. Light brown with variable grain.	Flooring, furniture, and railway sleepers.

 they lose their leaves.
These trees are broadleaved, bushy and slow growing.
Overall they tend to be harder to work with and more expensive than other types of timbers.
They are less porous and denser cell structure which makes them harder wearing and less prone to rotting
TYpEs:

Name	Characteristics	Uses
Pine	Lightweight, easy to work but can split.	Interior construction, cheaper furniture and decking.
Sprı	Easy to work, high stiffness to weight ratio.	Construction, furniture and musical instruments Redwood
Cedar	Easy to work and machines well, some rot resistance.	Outdoor furniture, beams, posts and decking.
	Easy to work, can blunt tools, finishes well and naturally resistant to rot.	Outdoor furniture, fences and cladding for buildings.

They are sheets of processed natural timber and adhesives - so they are human made boards
These are usually made from waste wood, low-grade and recycled timber.
Can be covered by thin slices of high quality wood known as veneer to make it look aesthetically pleasing. Cheaper than natural timber. They come ir boards and have no grain.

TYpes:

Name	Characteristics	Uses
MDF	Rigid and stable, good value with a smooth easy to finish surface.	Flat pack furniture, toys and kitchen units.
Plywood	Stable in all directions as alternating layers. Flexible versions available.	Furniture, shelving, toys, interior and exterior construction.
Chipboard	Good compressive strength, not water resistant and prone to chipping on edges.	Flooring, low end kitchen units and worktops.
Block board	Stable, tough and heavy. Finishes well.	Furniture, doors, shelving and indoor construction.
Hardboard	Flexible, even strength and easily damaged by water.	Furniture and photo frame backing.

Wood is considered a sustainable resource as new trees can be grown to replace those felled. Here are some issues and positives surrounding the impact that wood is having on the environment:

1
-In many places, wood is being used at a greater rate which means it is unsustainable.
-Illegal felling is leading to deforestation as people aren't replanting trees.
-Deforestation helps with global warming.

- To make sure you are buying sustainable timber, you need to make sure it is approved by the Forest Stewardship Council or the Endorsement of Forest Certification.

FSC

SOURCE/Oricim

Timber comes from trees - this is known as the source or origin of the material. This is how we change into timber.

1. When trees are cut down, this is known as felling. This can be through machine or chain saws, just like the image.

2. Branches are cut off and the logs are stored until they are transported to a sawmill.
3. When at the sawmill, machines such as band saws agge cij4cular saws are used to create boards/planks.

Drama

Features of Kneehigh's work:

Visual storytelling.

Adaptation.
Archetypical characters.
Chorus.
Inventive use of props.
Physical theatre.
Puppetry.
Dance.
Song/music.
Audience interaction.
Pre-show.
Multi-role.
Comedy.

Kneehigh's Beliefs:

The script is only a starting point.
The work should be playful.
Everyone contributes to rehearsals. Use the skills and talents of your company. Produce work for non theatre-goers. The work should be relevant to modern issues.

Greek Theatre:

Performed in amphitheatres.
Only male actors.
Originally, plays were just a Chorus - a group of 50 speakers who recited a story in verse.

Traditional drama really began when an actor named Thespis had the idea for one person to break away from the chorus and reply to what they said.

The Chorus would narrate the drama and comment on what was happening. They would be asking the questions the audience would want to ask.

Masks helped to amplify actors' voices, communicate the main emotion and gender of the character.

Key terms

Dharma

Dukkha
Anicca

Jataka

Buddha
Ascetic

Enlightenment Finding out \& understanding the truth about the universe and existence

Siddharta Gautama
Mahayana

Therevada
Paticca Samuppada
\(\left.$$
\begin{array}{cc}\begin{array}{c}\text { Meditation } \\
\text { The } 4 \text { Sights } \\
\text { Tanha }\end{array}
$$ \& Old man, sick man, dead man and holy man

Craving\end{array}\right]\)| Escape from the cycle of rebirth and dukkha |
| :---: |
| Rebirth | | After you die, your karma will begin another |
| :---: |
| person's life |

Arhat The final life where you become a Buddha in Therevada

Bodhisattva
The teaching of the Buddha Suffering

Impermanence (things don't last)
No permanent soul
Book containing stories about the life of Buddha

An enlightened being
Harming your body to free your mind- IE starving yourself
he birth name of the Buddha
A branch of Buddhism associated with Tibet and China

The 'original' Buddhism that starter in India Dependent origination- each life/ origin depends on the one before

Focussing deeply

Craving

Nirvana
Rebirth

Where you choose to 'reincarnate' and return to Samsara instead of going to Nirvana in order to help others.

Key teachings

The 8 Fold Path

8 things that must be done 'right' to gain good karma to get to Nirvana. Buddha called it a 'raft' to escape Samsara (UT-SAL-EMC)
The 4 Noble Truths
The first thing Buddha taught to the ascetics who became the first converts. Dukka (suffering), Tanha (craving), Nirvana (non-existence), Magga (The 8 Fold Path) DTNM

The 5 Skandhas

The 5 parts that make up a person. When we die, these piles fall apart and the next life starts as we have no soul and do not carry on (anatta). The Skandhas are taught using the chariot analogy from Nagasena II. Mental Form (thoughts), Consciousness (awareness), Physical Form (your body), Sensations (the 5 senses), Perception (recognition) MC PSP

The 3 Marks of Existence

Three things that harm us simply because we exist. Dukkha (suffering is inevitable such as getting old, sick and dying), Anicca (things are impermanent like relationships and possessions) and anatta (we have no soul- we cease when our skandhas fall apart) DAA

The 5 Precepts of the Laity

Vows of regular Buddhists- No killing, no stealing, no sexual misconduct, no substances that cloud the mind, no false speech (lies).

The 5 Precepts of the Sangha (monks)

Vows of monks (bikkhus) Own nothing, no sex, no high bed, no self-beautification, no eating after mid-day.

The 6 Realms of Existence

The 6 Realms (mindsets) you can be born into including the Hungry Ghosts, Animals, Angry Gods, Gods, Hell and Humans. You can only reach enlightenment from the Human Realm on the Wheel of Dependent Origination.

The 12 Niddanas

12 images on the outside of the Wheel of Dependent Origination that show how dukkha is caused (eg, the monkey eating fruit is craving).

The 3 Poisons

Shown in he middle of the wheel, hatred (snake), green (board and arrogance/ ignorance (cockerel) need extinguishing to escape rebirth.

Key Quotes

Walpola Rahula

Nirvana is 'cool water that calms the fever'

Do no engage in 'foolish babble and gossip'

Escape the 'round of rebirth'

Buddha

Nirvana is 'the end'

The 8 Fold Path is a 'raft' from Samsara to Nirvana.

Meditation 'frees us from Mara's fetter'

Nagasena II

The Chariot Analogy
The Candle Analogy
The turtle Analogy'

Ninian Smart
Nirvana is 'the end'

Jataka

Siddhartha has '3 mansions'
His 'legs were like bamboo, his back was like a rope'

Key terms

Aims of Punishment	The reasons we punish criminals (RRPD)
Community service	Completing free work in the community as a punishment. It helps the criminal to reform and benefits society.
Corporal punishment	Physical punishment- e.g. The Cane, physical beatings.
Crime	Breaking the law. It can be committed against a person (e.g. assault), property (e.g. arson) or the state (e.g. terrorism).
Capital punishment	The death penalty/ execution.
Deterrence	To deter/ put off a 'would be' criminal.
Evil intention	Morally wrong thinking- planning to do something to harm others.
Forgiveness	Letting go of anger towards someone who has wronged you.
Hate crime	A crime committed because of prejudice- e.g. beating up a person because they are homosexual. This can double your sentence in the UK.
Law	The rules which a government has to keep up safe.
Reformation	Where the punishment aims to change/reform the criminal.
Retribution	Where the punishment aims to make the criminal suffer. This also includes getting justice for the victims.
Protection	Where the punishment helps to protect society.
Greed	Wanting to possess goods or items of value that you don't need
Mental illness	A medical condition that affects a person's feelings, emotions, mood or ability to relate to others.
Addiction	Dependency on a substance which is difficult to overcome
Free will	The ability to make decisions freely.

Purpose of the law

The point and purpose of having laws is to ensure a society works well to benefit its citizens. For example, we need laws on tax to fund the NHS and Education. We need laws on traffic to prevent crashes (such as stopping for a red light) and we need laws to protect life such as murder being illegal.

Purpose of punishment

Punishments exist to make sure people follow the law for the benefit of society. It also helps them develop and understanding of right and wrong through experiencing the rewards of good behaviour or the consequences of negative behaviour.

Moral agency

As humans, we are 'moral agents.' This means we are individuals (agents), who are capable of making good or wicked choices (morality). As we grow and develop, we gain a better understanding of right and wrong and aim to become 'fully moral agents.' some people are more morally developed than others (a less morally developed agent). Some people may never become 'fully moral agents' as they don't have a common sense of morals- EG a serial killer.

Corporal Punishment

Physical punishment uses the 'pain vs pleasure' principal to humiliate and cause pain to deter 'would be' wrong doers. Punishments could include whipping, birching, beating and caning (the cane/rod was used in English schools until 1986 for state schools and 1999 for religious ones).

Capital Punishment

Known as the 'ultimate punishment.' It is only used for the most serious criminals. Methods could include gas chambers, hanging, beheading, the firing squad and lethal injection as well as the electric chair. In England, it was banned in 1965 (with the exception of treason- banned 1998).
Around half of the world still allows its use.

Forgiveness

In order to keep harmony in a society and support people emotionally (including mental health), we need forgiveness. We need to let go of our anger otherwise it drains us and makes us bitter/ resentful. Corrie Ten Boom (A Holocaust Survivor) says 'forgiveness is setting the prisoner free only to find out the prisoner was me.' Often, we try make the other person suffer, but we suffer too.

Hate Crimes

A hate crime is commited against an individual or group because of who they are (their protected characteristics). Crime that is considered a 'hate crime' is piace q7higher sentence/ penalty. Protected characteristics include a person's religion, sex, sexual orientation/preferences, race, age, disability or gender reassignment.

Key Quotes

 General quotations'An unjust law is no law at all' Thomas Aquinas 'It is out duty to break and unjust law' Martin Luther King
The conscience is the voice of God and must be obeyed according to the Bible and Church
'Right not to be
discriminated against' UN
Declaration of Human Rights
The punishment should fit the crime' Cicero God will 'reward the good and punish the wicked' Psalms
'Those who spare the rod hate their Children' Old Testament
'Give to Caesar' Jesus
Capital Punishment 'By killing a murdered you do not decrease the amount of murderers' Churchill
'The Death Penalty has a 100% non-reoffending rate' Donald Trump
We have the 'right to live' and the 'right to not be tortured' UN Declaration of Human Rights
'An eye for an eye' Old Testament
'Thou shalt not kill' Ten Commandments

Forgiveness

'Let he who has no sin cast the first stone' Jesus 'Forgive 70x7’ Jesus 'An eye for an eye makes the whole world blind' Gandhi

Food Poisoning

Terminology

Food poisoning Contamination Religious diets Factory farming Food poverty Food bank Halal
Kosher
Free Range Organic Bacteria Onset time

Main bacteria:

Salmonella, E-Coli, Campylobacter, Staphylococcus Aurous, Clostridium Botulinum.

Key symptoms

Nausea, vomiting, diarrhoea, stomach pain, fever, tiredness, loss of appetite.

Onset time

From consumption to first symptom. Different for each bacteria - can range from a few hours to a few days. Vulnerable groups (risk of serious illness)
Elderly, young children, pregnant women, immune compromised individuals.

Food Poverty

 Where an individual is unable to obtain or buy food and maintain good health.Religious dietary rules

Islam	Meat must be halal. Fast during Ramadan. No pork or alcohol allowed.
Judaism	Abide by Kosher rules and slaughter. Meat and dairy must be avoided together.
Buddhism	Mainly vegetarian. Avoids alcohol. Some fast between noon and sunrise of the following day.
Sikhism	Mainly vegetarian. Do not overindulge - eat only what is required. Not allowed other religiously slaughtered meat.
Christianity	No strict rules - some denominations are stricter. Lot of symbolism with food - blood (wine) and body (bread) of Christ.

Types of factory farming

Battery Farming	Large barns, no natural light, short life span, crowded conditions. Increased incidence of death and disease. Cheaper meat.
RSPCA Assured	Large barns, less crowded, access to better food, access to stimulation, less disease and death. Slightly longer lifespan.
Free Range	Access to outside, medical care, better food, far less crowded, longer life span, more expensive.
Free Range Organic	Same as free range but not given antibiotics for health and given organic food.

Year 9 Geography - Natural Hazards

Natural Hazard

Tectonic Hazard Earthquake and volcanoes threatening people or property.

Risk People's vulnerability, capacity to cope and nature of hazard.

Immediate. Buildings destroyed, people die.

Secondary Effect

Immediate
Response
Secondary
Response

Destructive Margin

Constructive Margin

Conservative Margin

Reasons people live in tectonic areas

Risk management
Monitoring, Prediction, Protection and Planning.

Hazard poor part of Haiti: Jan 2010, Richter 7, 200 000+ dead. world

Hazard rich part of world

Natural process threatens people or property

Primary Effect

Later. Homeless, lack of clean water, disease.

Evacuate, search and rescue, provide clean water.

Rehouse, rebuild, improve monitoring

Oceanic crust subducts under continental crust. V+E

Oceanic crust moves apart creates new land as magma rises. V+E.

Plates slide past each other with friction. E.

Always lived there, confident of monitoring, tourism, fertile soil.

	Key Term	Definition
	Continental	Relating to a continent, eg Africa, Asia, Europe.
	Convection current	A movement within the Earth's mantle caused by the heat of the core.
	Dense	Crowded closely together.
^УOヨHㄱINOLOヨ	Mantle	The semi molten layer of rock underneath the Earth's crust. This is the largest layer in the Earth's structure.
	Lava Magma	Molten rock that is released from the Earth's core in a volcano or fissure. Molten rock that is still under the Earth's surface.
	Molten	A term used to describe a liquid substance (eg rock, glass or metal) formed by heating a solid.
	Plate boundary	The region where two or more tectonic plates meet. It is a zone of intense seismic activity.
	Glossopteris	A plant that existed 200-300 million years ago. The fossil of this plant helps prove Pangea existed.
	The Wallace Line	A line between Asia and Australasia where the ecosystems change and the flora and fauna are completely different.
	Pangaea 2.0	The predicted reforming of a supercontinent in approximately 200 million years.
	Composite volcanoes	The typical pointy cone style volcano that has explosive eruptions.

```
Plate Movement
```


Volcanoes

```
Plates either move towards each other (destructive margin) away from each other (constructive) or past each other (conservative).
```


Year 9 Geography - Earthquakes

Tectonic plate One piece of the earth's crust.

Plate boundary

Conservative

Constructive

Destructive

Collision

Epicentre

Intensity

Shockwave

Magnitude scale

Richter scale

The point at which two tectonic plates meet.

Two plates move past each other in opposite directions or the same direction at different speeds.

Two plates move apart, allowing magma to rise and cool, forming new rock.

An oceanic and continental plate collide. The oceanic plate is denser and is plunged into the mantle where it is destroyed.

Two plates collide and one is pushed upwards, creating fold mountains.

The measure by which the strength of an earthquake is determined.

The concentration or strength of something.

A rapid flow of energy that is sent through the earth after an earthquake.

The size or severity of something, like an earthquake.

Earthquake proof
building

Resource Preparing for earthquakes

Buildings that are designed and built to withstand an earthquake.

Anything that is useful to people.

Seismometer A machine that detects seismic waves caused by earthquakes.
(Geographical information system) Electronic maps with layers added to display information about the area.

A scale on a graph where numbers increase exponentially, e.g. 1,10,100,1000 instead of 1,2,3,4.

Reasons people live in tectonic areas

Always lived there, confident of monitoring, tourism fertile soil.

Year 9 Geography - How fair is the world for the people who live within it?

Year 9 History

Half term 1: The British Empire

Source skills

Key people

Queen Victoria

Queen of England (1838-1901) was queen of England at the height of the British Empire and was head of state for nearly a third of the globe. In 1876, she took the title of Empress of India.

James Cook
First Englishman to discover coast of Australia and charter the land. Established New South Wales as a British penal colony.

Arthur Phillips
Phillips was the first governor of New South Wales and oversaw the penal colony. He ensured that people were treated fairly. It was so successful that, once criminals served their sentence, they stayed as Australian citizens.

Cecil Rhodes
English businessman who made his fortune selling diamonds mined from south Africa. He became so wealthy he named the country after himself, Rhodesia (now Zimbabwe). He remains a controversial figure.

Key terms

Indigenous Australian

Britannia

Colony
East India Company

Empire

Famine
Jewel in the

Imperialism

Nationalism

Penal colony

Robert Clive
English businessman who seized large areas of Bengal for the East India Company. This later became part of British controlled India.

Original inhabitants of Australia

A female figure used to symbolise the British Empire.

A country that is part of an empire.
Trading company that gradually took control of India.

A group of countries, people or land ruled by one single country referred to as the "mother" country.

A shortage of food.
The largest and richest part of Britain's
Empire.
The act of building an empire

Wanting your country to be the best or to be free from someone's empire

A territory used as a place for housing prisoners.

The period of British rule in India after 1857. From the Hindi word for reign.

Key events
Australia
In 1768 James Cook charters the coast of Australia, claiming Botany Bay for the British Empire. English settlers cast out Aboriginal Australians.

- Australia was set up as a penal colony to house Britain convict population. Governor Arthur Phillips oversaw the colony, which was a success. This resulted in some wanting to remain in Australia as citizens.
- In 1851, Edward Hargreaves found gold in an Australian river. This sparked a mass movement of people to Australia: the population of Melbourne reached 123,000 by 1854
- English traders had been involved with the slave trade since $16^{\text {th }}$ century.
- By the mid-1800's European countries began competing for African land. A large empire meant international power and recognition.
- In 1854 The Times named this hunt for African territories the "Scramble for Africa".
- In 1885, the European powers came together at the Berlin Conference. Here, Africa was carved up and distributed to the different European countries. There was not a single representative from Africa present at these talks.
- Britain controlled 32\% of Africa.

India was regarded as the 'Jewel in the Crown of the British Empire'.
Originally, the East India Company (a trading company set up under Elizabeth I) controlled large parts of India. Robert Clive seized Bengal for the company, raiding it's treasury and increasing the wealth of the East India Co

In 1857 there was a mass uprising by Indian soldiers. The Indian Mutiny led to thousands of deaths (both Indian and British). When order was restored, the British government took control of India, making it part of the British Empire. This signaled the start of the British Raj in India In 1876, Queen Victoria was proclaimed Empress of India, despite never visiting the country.

Year 9 History
Half term 2: The First World War - The Causes of War

Key terms

Key people

Kaiser Wilhelm II (1859-1941)
Grandson of Queen Victoria, Kaiser Wilhelm was emperor of Germany. His foreign policy of Weltpolitik brought him into conflict with other European powers. He abdicated at the end of the war, fleeing to the Netherlands.

Archduke Franz Ferdinand (1863-1914) Ferdinand was heir to Austro-Hungarian throne. He was assassinated by Gavrillo Princip in 1914. His death sparked a chain of events that led to World War One.

David Lloyd George (1863-1945)
British politician responsible for Britain's ammunition during the war. Became Prime Minister of Great Britain in 1916 and saw Britain to victory.

Gavrillo Princip

Serbian nationalist who was part of terrorist organisation the Black Hand Gang. This group opposed Austrian expansion and were responsible for the death of Archduke Franz Ferdinand

Imperialism

Nationalism

Militarism

Weltpolitik

Alliance

Annexe.

Kaiser

Triple Entente - Britain, France and Russia (with Serbia).

Triple Alliance - Germany, Austria-Hungary and Italy.

Ultimatum

Extending a country's influence by building a large overseas empire usually using military force.

A feeling of being superior to other countries and pride in your country.

The belief that a country should keep a strong military and be prepared to use it to defend the country's interests.
'World politics' - an aggressive empire The First building policy. Moroccan Crisis A group of countries that are formally united or working together for a similar aim or common purpose.

To take over another country.
Rule of Germany
The
A final demand with a threat of force if you don't agree.

To get troops ready for battle.

Causes of World War

One Britain. for help. down. Europe. rebellion.

Militarism; Spending on armies rose by 300% in Europe between 1890-1914. Naval Arms Race Germany aimed to have more dreadnoughts than

Alliances: By 1914, Europe had formed two opposing alliances. The need for allies increased tension. Imperialism; The Kaiser's Weltpolitik led to conflict in Morocco in 1905 \& 1911. Austro-Hungarian expansion in the Balkans led to tension with Russia in 1908. Nationalism; All countries were seeking to exert their dominance over others.
Morocco was one of the few African countries not controlled by Europe. France claimed, however Germany also wanted to expand it's empire - through 'Weltpolitik'.
1905 - The Kaiser visits Tangier in Morocco and announced that Germany would support an independent Morocco. He called for an international conference to discuss Morocco.
At the Agadir Conference, Germany was unable to prevent France from getting a foothold in Morocco. Also, France and Britain began secret military talks. In 1908, Austria-Hungary annexed Bosnia, a small Slavic state next to Serbia. Serbia asked its ally Russia

Germany said it would support Austria-Hungary in any dispute with Russia. Russia and Serbia had to back

Russia had lost face and was annoyed. Tension rose in

In 1911 a rebellion against the ruling Sultan broke out in Morocco. The Sultan appealed to France for help. The French went to Morocco to help put down the

Germany opposed the French actions, and sent a gunboat the Panther to Agadir to protect German interests in Morocco.
The use of a gunboat alarmed other countries, especially Britain who saw it as a warlike action. Britain declared it's support for France.
Germany were forced to back down and had to accept French control of Morocco. Germany felt humiliated.
Central
Allied
Powers

Gen. Douglas Haig(1861-1928)
British soldier who commanded the allied forces at the Somme. Very controversial to this day with disputes over this tactics and understanding of the war.

Lord Kitchener (1850-1916)

British war hero who served in the Boer War. His image was used in recruitment campaigns across Britain to encourage men to join the war.

Tommy - Slang name for British soldiers. Huns- Pejorative nickname given to German soldiers.
Kaiser Wilhelm II (1859-1941)
Grandson of Queen Victoria, Kaiser Wilhelm was emperor of Germany. His foreign policy of Weltpolitik brought him into conflict with other European powers. He abdicated at the end of the war, fleeing to the Netherlands.

General Hindenburg (1837-1934)
Commander of the German forces in WWI. He eventually becomes President of German and is replaced by Hitler when he dies.

Key terms

No Mans Land

Poison Gas

Somme

Blockade

Stalemate

Attrition
warfare Conscription

Armistice
Mechanical weapon, first used on the Somme.

Key events New
Weapons used in
Area between the trenches, disputed terrain.

Weapon designed to irritate the skin and blind victims..

The most 'famous' battle of WWI, with over 1 million deaths.

Stopping food and supplies getting to an area or country.

A standstill where neither army can advance.

Wearing an enemy down through prolonged and continued attack.

Every man of fighting age is required to fight in the army.

An agreement to stop fighting; a ceasefire. This was signed on Nov $11^{\text {th }}$ 1918.

Provenance Who created the source and why?

Tanks: First used by the British at the Battle of the Somme. They were clumsy and unreliable at first, they improved rapidly as the war progressed. Poison Gas: First used by the Germans in 1915. Chlorine gas irritated the lungs and people died of suffocation. The gas used 'evolved' over time to become Mustard Gas. This had no smell and caused blindness and death.
Machine Gun: Gun capable of firing up to 8 bullets a second, however heavy and immobile at first.

The Battle
of the
Somme
The most infamous battle of WWI and has been used as an example to demonstrate the horrors of the war. Lunched to relieve the French forces who were involved in heavy fighting at Verdun. The first day of the battle, July $1^{\text {st }} 1916$, was a calamitous day for the British forces, with over 50,000 casualties. This was after a 10 day bombardment of the German lines. The same tactics were repeated for many weeks and months thereafter.
146,000 Allied deaths, 164,000 German deaths. A shocking battle for the people back home in Britain.
Two views of Haig: 'Lions led by donkeys' which sees Haig as an uncaring general who tried the same failed tactics over and over again. Others take a more sympathetic view.

Life on the Western Front was difficult for soldiers, with poor hygiene, cold and damp living arrangements and boredom being prominent aspects of soldiers lives.

Fighting during the war went on for 4 years (191418). In 1916, David Lloyd George became Prime Minister and announced a 'total war' effort, which included mass production of weapons in Britain. In 1917, America joined the war for the Allies. They brought new weapons and soldiers. By 1918, Germany was close to running out of resources and its soldiers began mutinies. On $11^{\text {th }}$ November 1918 Germany surrendered, signing the Armistice.

After the Germans failed to capture Paris and were held back after the Battle of the Marne in 1914,
both sides 'dug in' a long line of trenches; the Western Front.

Year 9 History

Key terms

Adolf Hitler (1889-1945)
Leader of Nazi Party and the fascist dictator of Germany from 1934 until 1945. During his dictatorship, he initiated WWII with his invasion of Poland.

Joseph Goebbels (1897-1945)
Minister for Propaganda in Nazi Germany. One of Hitler's closest advisors and was known for his public speaking and antisemitism.

Hermann Goering (1893-1946)
Leading Nazi official and head of the German air force during WWII.

Heinrich Himmler (1900-1945)
Leading member of the Nazi party and responsible for the Gestapo. He was one of the main architects of the Holocaust.

Hans and Sophie Scholl
Students and members of the White Rose Group who left anti Nazi leaflets in public places. They were executed for their crimes.

Claus von Stauffenberg

Senior officer at the War Office in Berlin famous for the 1944 July bomb plot in which

Half term 3: Nazi Germany

Anti-Semitism
Hatred and mistreatment of Jewish people
A prison camp used to hold political prisoners.

Ruler of a country with absolute control. Hitler's title; meaning all powerful leader. The secret police in Nazi Germany.

A period of severe worldwide economic depression triggered by the Wall Street Crash of 1929.

A programme aimed at young people in Nazi Germany in preparation for the military.

The process of teaching a person or group to accept a set of beliefs.

Children, Kitchen, Church -3 areas of focus for women in Nazi Germany
"My Struggle" - Hitler's book, written whilst in prison in 1925.

Govt exercising power through police.
Hitler's private protection squad who became elite soldiers..

Agreement at the end of WW1 that blamed Germany for war.
Treaty of
Versailles

The Fuhrer
Gestapo

Great
Depression

Hitler Youth

Indoctrination

Kinder, Kirche, Kuche (3Ks)

Mein Kampf

Police State
SS
(Schutzstaffel)

Source skills
Content
Provenance
What can be seen in the source.
Who created the source and why?

Key events

Voting for Hitler

Year 9 Music

Composition through Improvisation

Terminology	
12 bar blues	A chord sequence, used as a foundation within blues music, that is repeated.
Blues scale	A collection of notes that are used to create specific genres of music.
Melody	The tune within a piece of music.
Improvise	Creating music on the spot. Unprepared performance.
Expression	To add emotion and sensitivity to music. To lift music from the page.
Raga	A collection of notes mainly used within classical Indian music.
Tala	A cycle of beats that repeats, mainly used in classical Indian music.

```
Stave Notation - Treble Clef
```


Famous musicians you will study
-Bessie Smith
-Sonny Terry \& Brownie McGhee -Howlin' Wolf
-Billie Holiday
-Anoushka Shankar
-A.R. Rahman

Blues instruments

Banjo, harmonica, vocals, guitar, piano, trumpet, saxophone.

Indian instruments

Sitar, bansuri, sarangi, harmonium, tabla, tambura.

Composing using a DAW

Terminology	
DAW	Digital Audio Workstation. We are using a program called Mixcraft.
Programming	A form of music production using electronic devices and software.
MIDI	Musical Instrument Digital Interface. A way to connect musical devices to control and create sound.
Synthesiser	An electronic musical instrument that generates audio signals.
Velocity	The force something is played with, which links to the volume of sound. This can be edited through Mixcraft.
Metronome or click track	A continuous click or sound at equal measures. To aid playing in time.
Piano roll	A graphical display of MIDI notes. Showing pitch, length and velocity, which can be edited and controlled.

Keyboard Diagram

FGABCDEFGAB

How to build a basic chord

1) Use the $1^{\text {st }}, 3^{\text {rd }}$ and $5^{\text {th }}$ notes of the scale to build a basic chord.

Example: A B C D E F G
= A minor chord = A C E
2) Major Chord

5+4 semitones = Example: C E G
3) Minor Chord
$4+5$ semitones $=$ Example: A C E

Year 9 Music

Band Project

Keyboard Diagram

Ukulele chord diagram

Guitar chord diagram

Terminology
Notation
Accuracy
Fluency
Tempo Beat
Time signature Rhythm Melody Phrasing
Sequence Pitch
Instrumentation
Structure
Harmony
Chords
Style
Genre
Ensemble

Year 9 PE

Basketball

Rules

A basketball team can have a maximum of five players on the court.
\square Player substitutions can be made at any time and there is no restriction on the number of substitutions made.
A ball can travel through dribbling or passing.
A player is no longer able to dribble with the ball once the player puts two hands on the ball. At this point, a player must either pass or shoot.
If a team wins possession back in their own half, they have ten seconds to get it into their opponent's end or a foul will be called.
An attacking team has 24 seconds from gaining possession of the ball to shoot
\square After the shot is taken, the clock is restarted for another 24 seconds.
After a team scores a basket, the ball is returned back to the opposition to start again.
All fouls that are committed throughout a game are to be accumulated and when a certain number is reached, the umpire will award a free throw.
\square Depending on where a technical foul is committed, the umpire may award a number of free throws a player will receive.
\square Violations can be awarded by the officials in basketball for player handling errors. These include travelling, double dribble, goal-tending and back court violation.

Scoring

In a game of basketball there are three clear ways to score points. If a shot is successfully scored from outside of the three-point line, three points are awarded. If a shot is successfully scored from inside of the three-point line, two points are awarded. If a team is awarded a technical foul then they will receive between one and three free shots. Each shot scored will be awarded with one point.

Bounce Pass

A bounce pass is a short pass that enables the player to find a teammate in a crowded area. The height of the ball makes it difficult for the opposition to intercept.

Stage one

Feet shoulder width apart in opposition, with knees bent. Place hands each side and slightly behind the ball, with the fingers comfortably spread. Hold the ball at waist level, with elbows tucked in.

Stage two

Step in the direction of the pass, through extending your legs, back and arms. The wrist and fingers should be forced through the ball releasing it off the first and second fingers of both hands. Follow through with the arms fully extended, fingers pointing at the target and thumbs pointing to the floor.

Chest Pass

A chest pass is a very fast and flat pass. This enables a team to move quickly up a court in a precise and accurate fashion.

Stage one

Stand with feet shoulder width apart, on the balls of your feet with back straight and knees slightly bent. Place hands on the sides of the ball with the thumbs directly behind the ball and fingers comfortably spread. The ball should be held in front of the chest with the elbows tucked in.

Stage two

Step in the direction of the pass by extending your legs, back and arms. Push the ball from the chest with both arms (not from one shoulder). Fingers are rotated behind the ball and the thumbs are turned down. The back of the hands face one another with the thumbs straight down.

Stage three

Make sure the ball is released off the first and second fingers of both hands. Follow through to finish up with the arms fully extended, fingers pointing at the target and thumbs pointing to the floor. Page $\$ 0$

Officials

During a competitive game of basketball there are two referees, a scorekeeper, timekeeper and a shot clock operator. To ensure that everybody is aware of a decision made, the referees perform a series of hand and arm signals.

Year 9 PE
BADMINTON

Key terms
Backhand
Forehand
Grip
Rally

Rules and regulations

- A game always starts at love all (0-0).
- A game is played up to 21 points; the game must be won by two clear points.
- A game always starts with a serve from the right hand box (Even).
- The serve must land beyond your opponents service line.
- All serves must be hit into the diagonal service box.
- Whoever wins the point serves next.
- You cannot hit the net with your racket or body.

Attacking shots

- Smash shot
- Drop shot
- Net shot

Defensive shots

- Overhead clear (played to the back of your opponents court)

Todmorden Leisure Centre Ewood Lane OL14 7DF

Brunlea Badminton Club St Peter's Centre Burnley BB11 1NG

Year 9 PE

Football

Short pass

A short side foot pass enables a team to quickly pass a ball and help maintain possession. It is used for accuracy.
Move parallel to the ball and place your non-kicking foot to the side of the ball.
Keep your eye on the ball until you have it under your control.
Look up to see where is the best place to pass it.
\square On selection of your pass, maintain a strong body position.
Swing your kicking foot through and strike the ball with the inside of your foot.
Aim to hit the middle of the ball to ensure it stays close to the ground.
Keep looking at your target.
Follow your kicking leg through towards the intended target.
The speed of the kicking leg will direct how hard you kick the ball.

Long pass

A long pass is an attacking skill that allows players to switch the direction of the attack very quickly to create space, find a teammate or to catch out the opposition.
Move parallel to the ball and place your non-kicking foot to the side of the ball.
Keep your eye on the ball until you have it under your control.
Look up to see where is the best place to pass the ball.
\square On selection of your pass, maintain a strong body position.
Explosively bring your kicking foot through and strike the ball with laces of your football boot.
Aim to hit the middle of the ball to ensure it stays close to the ground or the lower half of the ball if you want to lift it over opposition players.
Keep looking at your target.
Follow your kicking leg through towards the intended target and your body over the ball.
The speed of the kicking leg will direct how hard you kick the ball.

Control

Good control of the football is an essential skill to maintain possession of the ball from the opposition and, if done accurately, gives the player more time to make the correct next decision.
Keep your eye on the ball at all times
On contact with the ball, withdraw the foot slightly to take the momentum out of the ball (this is known as "cushioning").
\square Aim to make contact with the middle of the ball to ensure that it stays close to the ground and does not bounce up.
\square Once under control, move the ball out of your feet to allow the next decision to be made.

Block tackle

The block tackle is an essential skill for winning the ball back in football. It is mainly used when confronting an opponent head on and it is important to complete it with good timing and technique to prevent injury or fouls.
Close down your opponent quickly but do not rush uncontrolled at them.
Try to reduce any space around you and monitor for passing options.
Stay on the balls of your feet, arms slightly out to jockey your opponent.
Keep your eye on the ball and wait for a clear view of the ball.
When you can see most of the ball, transfer your weight from your back to front foot and move the inside of your foot towards the ball.
\square Maintain a strong body position.

Throw-in

The throw-in is the legal way to restart the game if the ball has gone out of play from either of the side-lines.
Hold the ball with both hands and ensure that the thumbs are behind the ball and fingers are spread.
Hold the ball behind the head with relaxed arms and elbows bent.
Keep your feet shoulder-width apart.
\square Face your target.
Lean back with both feet in contact with the ground.
\square Slightly bend your knees and arch your head, neck, shoulders and trunk.
When ready, propel yourself forward and release the ball just as it passes your head.
Once the ball is released, bring your strongest leg forward and out in front of you for balance.

Heading

The header can be an attacking or defensive skill and is used to try and win the ball when it is in the air.
Keep your eyes on the ball
\square Use your forehead to make contact with the bottom of the ball for a defensive header or the top of the ball for an attacking header.
\square For a defensive header, it is important to get good height and distance but for an attacking header you need power and accuracy.
\square You can also use flick headers to pass to a team mate.

Year 9 PE

Health, Fitness and Exercise

Health can be defined as 'complete physical, mental and social wellbeing and not only the absence of illness or infirmity'. Fitness can be defined as 'the ability to meet the demands of the environment'. Exercise can be defined as 'a form of physical exercise done to improve health or fitness or both'. Adults - five sessions of thirty minutes activity per week. The activity should be physical enough to cause the adult to breathe more deeply and to begin to sweat. Children and young people - seven sessions of sixty minutes per week. At least two of these sessions should be of high intensity exercise such as running, jumping or cardiovascular based sports.

Consequences of a sedentary lifestyle

If a person does not take part in regular physical activity, exercise or sport then they are at risk of a number of illnesses and negative effects such as weight gain or obesity; heart disease; hypertension (high blood pressure); diabetes; depression; increased risk of osteoporosis and loss of muscle tone.

Lifestyle choices

Other lifestyle choices can affect a person's health in either a positive or negative way. For example, eating a balanced diet means a person is less likely to become ill or put on excess body fat; getting enough sleep is important for the body to rest and brain to function optimally; not smoking as this causes illnesses such as bronchitis and lung cancer and not taking recreational drugs such as alcohol as in the short term it can lead to disorientation and poor decision-making and in the long term can lead to disease.

Health related exercise

	Definition	Example
Body composition	The percentage of body The gym weight which is fat, muscle and bone	The gymnast has a lean body composition to allow them to propel themself through the air when performing on the asymmetrical bars
Cardiovascular fitness	The ability of the heart, lungs and blood to transport oxygen	Completing a half marathon with consistent split times across all parts of the run
Flexibility	The range of motion A gymn (ROM) at a joint improve	A gymnast training to increase hip mobility to improve the quality of their split leap on the beam
Muscular endurance	The ability to use voluntary muscles repeatedly without tiring A rower to prope	A rower repeatedly pulling their oar against the water to propel the boat towards the line
Strength	The amount of force a muscle can exert Pushing against a resistance the resis	Pushing with all one's force in a rugby scrum against the resistance of the opposition pack
Agility	The ability to change the position of the body quickly and control the movement	A badminton player moving around the court from back to front and side to side at high speed and efficiency
Balance	The ability to maintain the body's centre of mass above the base of support	A sprinter holds a perfectly still sprint start position and is ready to go into action as soon as the gun sounds
Coordination	The ability to use two or more body parts together	A trampolinist timing their arm and leg movements to perform the perfect tuck somersault
Power	The ability to perform strength performances quickly	A javelin thrower applies great force to the spear while moving their arm rapidly forward
Reaction time	The time taken to respond to a stimulus	A boxer perceives a punch from their left and rapidly moves their head to avoid being struck
Speed	The ability to put body parts into Pagés 83 quickly	A tennis player moving forward from the baseline quickly to reach a drop shot close to the net

Netball

Rules

Players are not allowed to travel with the ball.
A team can have up to 12 players but only seven are allowed to play on court.
\square Defending players are unable to snatch or hit the ball out of another player's hands.
A defending player is only allowed to stand beside the player with the ball until it has left their hands.
\square A defending player must stand three feet away from the person with the ball.
\square An attacking player is unable to hold the ball for more than three seconds.
\square Players must remain within their designated zones.
The team retaining possession after the ball goes out of play have three seconds at the sideline to get the ball back into play.

Officials

During a competitive game of netball there are two referees and up to two scorekeepers and timekeepers officiating.

Scoring

In a game of netball there are two clear ways to score points:

1. In open play, if a shot is successfully scored from inside the goal circle, the team gains one point.
2. If the team is awarded a technical foul then they will receive a free shot at the net. A successful shot will be awarded with one point.

Bounce Pass

A bounce pass is a short pass that enables the player to find a teammate in a crowded area. The height of the ball makes it difficult for the opposition to reach and intercept.

Stage one

Feet shoulder-width apart in opposition, with knees bent. Place hands each side and slightly behind the ball, with the fingers comfortably spread. Hold the ball at waist level, with elbows tucked in.

Stage two

Step in the direction of the pass, extending the legs, back and arms. The wrist and fingers should be forced through the ball, releasing it off the first and second fingers of both hands. Follow through with the arms fully extended, fingers pointing at the target and thumbs pointing to the floor.

Chest Pass

A chest pass is a very fast and flat pass which enables a team to move quickly up a court in a precise and accurate fashion.

Stage one

Stand with feet shoulder width apart and on the balls of your feet, with back straight and knees slightly bent. Place hands on the sides of the ball with the thumbs directly behind the ball and fingers comfortably spread.

Stage two

The ball should be held in front of the chest with the elbows tucked in. Step in the direction of the pass, by extending the legs, back, and arms. Push the ball from the chest with both arms (not from one shoulder). Fingers are rotated behind the ball and the thumbs are turned down.

Stage three

The back of the hands face one another with the thumbs straight down. Make sure the ball is released off the first and second fingers of both hands. Follow through to finish up with the arms fully extended, fingers pointing at the target and thumbs pointing to the floor.

Shoulder Pass

A shoulder pass is a very dynamic, fast and long pass which enables a team to switch positions on court very quickly to either find a player in space or break defensive screens.

Stage one

Player's feet should be shoulder width apart in opposition. Opposite foot forward to throwing arm. Stand on balls of feet with toes pointing toward target, and knees slightly bent. Hold the ball at head height, slightly behind the head. Elbow should be at a 90° angle and fingers spread behind the ball.

Stage two

Step in the direction of the pass by transferring the body weight from back foot to front foot. Pull the arm through with the elbow leading. To follow through, fully extend your arm and wrist. Point the fingers in the same direction as the pass, with palms facing down.

Pivoting

The pivoting action is a swivel movement that allows the player to move on a fixed axis to either pass or shoot.

Stage one

Run towards the ball and jump by extending the legs and ankles. Keep the eyes firmly fixed on the ball. Bring the hands out in front of the body at chest height with fingers spread open and pointing up.

Stage two

In the air catch the ball with thumbs an inch or two apart making a 'W' shape. Land on the ball of one foot on the ground. Flex the knee and ankle as the foot hits the floor.

Stage three

Stand with knees slightly bent and the feet shoulder width apart. Bring the ball into the body to protect it. Pivot by rotating on the ball of the landing foot. Keep the upper body straight and head up. Make sure the hip of the pivoting leg is pointing in the direction the player is aiming to pass the ball in. The player can move or step with the other foot any number of times. The player is not allowed to lift the foot they are pivoting on before they release the ball.

REMEMBER : alojarse and quedarse both mean "to stay". Use alojarse only for paid accommodation such as hotels. Quedarse is much more versatile and can be used both for staying in most places (including cities), with family and also paid accommodation.

REMEMBER - In Spanish "hacer" means "to do" and is often used in combination with actions and activities.
However, watch out, because sentences such as "HICE natación" are translated back into natural English as "I swam" or "I WENT swimming".

Lo que más me gustó [What I liked the most]	de Cádiz [about Cádiz]	fue cuando [was when]	comí marisco en el puerto de Santa María [I ate seafood in the port of Santa María] visité el castillo de Santa Catalina [I visited the Santa Catalina castle] fui al teatro romano [I went to the Roman theatre]

Me encantó [l loved] Nos encantó [We loved]		el viaje a Cádiz	y me gustaría [and I would like] y nos gustaría [and we would like]		volver el año próximo [to go back next year]		
Hoy [Today] Mañana [Tomorro	voy a ir [lam going to go] vamos a ir [we are going to go]		a Sevilla $\begin{aligned} & \text { en t } \\ & \text { en a } \\ & \text { coac }\end{aligned}$	ren [by tran autocar [by ch		viaje dura [the trip s]	dos horas [2 hours]
En Sevillavoy a alojarme [1 a vamos a alojarnos stay]	m going to stay] [we are going to	en \quadun un	un albergue juvenil [a youth hostel] un hotel		cerca de [near] al lado de [beside]		la catedral de la Giralda la plaza de España
El primer día [On the first day]	por la mañana [in the morning] por la tarde [in the afternoon]		voy a vamos a	dar un paseo por [go for a walk around] visitar [visit]		el Museo de Bellas Artes [the museum of fine arts] el parque de María Luisa el barrio de Triana	

El segundo día [On the second day]	voy a \quad vamos a	dar un paseo por el casco antiguo [to go for a walk in the old town] ver los jardines del Real Alcázar [to see the gardens at the Real Alcázar]

| Finalmente [Finally] | voy a | vamos a | volver a casa [go back home] | en autocar | en avión | en coche en tren |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Creo que el viaje a Sevilla será [I believe the trip to Sevilla will be] | genial \quad Page 67 | inolvidable [unforgettable] |
| :--- | :--- | :--- | :--- |

[^0]: I will make school aware if members of our school community are not upholding our values.

[^1]: The exponent (or index or power) of a number says how many times to use

